ПОВЫШЕНИЕ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ ЦПГ ОПТИМИЗАЦИЕЙ РЕЖИМОВ РАБОТЫ ТРАКТОРНОГО ЛВИГАТЕЛЬ

Канд. техн. наук Камара А., Наиденович Д.Н. Басенок Г.С. (БИМСХ, г.Минск)

В автотракторных двигателях детали цилиндропориневой груп-я пы подвержены повышенному износу. Снижения износа деталей возможно путем оптимизации режимов их работы ДВС. Установлено, что пря реботе двигателя Д-240 на моторном масле М-ІОГ₂ в температурном режиме 353...373 К достигается минимальный износ ЦПГ. С повышением температуры системы охлаждения двигателя от 373 до 383 К интенсивность изнашивания деталей возрастает в 1,2...1,3, а при увеличении от 383 до 393 К в 1,8...2,5 раза.

Изное детелей ЦПГ зависит также от скоростных и нагрузочных режимов работы. Так, средняя скорость изнашивания на холостом ходу в 6,2...9,9 раза меньше, чем при максимальной нагрузке. На максимальном скоростном режиме и нагрузке двигателя концентрация меди в моторном масле возрастает ст I,I \cdot 10^{-5} до 8,2 \cdot 10^{-5} г, а железа от I,I \cdot 10^{-4} до 8,3 \cdot 10^{-4} г в час. При увеличении нагрузки двигателя до 95% интенсивность изнашивания повышается соответственно от 0,33 \cdot 10^{-8} до 26,7 \cdot 10^{-8} и от 3,33 \cdot 10^{-7} до 28 \cdot 10^{-7} г в час.

На основании многофакторного эксперимента определены оптикальные режимы двигателя, обеспечивающие эффективность его работы и минимальный износ деталей.

Наибольшее значения критерия оптимальности $\frac{Ne}{L}$ от 8,6 до 13.1 по железу и от 17,1 до 33,6 по меди получены при работе двигателя с эффективной мощностью соответственно 14,7 и 53,8 кВт, температуре моторного масла 358...383 К и частоте вращения колейтатого вала 1670...2080 мин $^{-1}$.

Минимальный износ сопряжения гильза-порыневое кольцо наолюдается при температурном режиме работы двигетеля 353...373 К, частоте вращения коленчато о вала 0,85 $n_{\rm K}$ мах и нагрузке 53.8 кВт (табл. I).

Таблица I Зависимость критерия оптимальности от эффективности мощности двигателя

износу мощности к вффективной	Эффективная мощность двигателя, кВт							
	7,35	: 14,7 :	22,05:	29,4:	36,75:	44,I:	51,45:	58,8
	5,6	8,6	10,4	11,3	11,9	13,1	12,5	13,0
	9,0	17,1	24,4	26,3	31,6	33,2	33,6	33,6

Исследованиями установлено, что на неличилу износа ЦПГ окавывает влияние продолжительность работы двигетеля, размеры, геометрические параметры и морфология продуктов износа.

Таблица 2 Размер продуктов износа и содержание в них железа в зависимости от времени работы двигателя

Продолжительность	Размер час	Содержание			
работы двигателя, Ч	крупных	жихлем	железа в продуктах износа, Я		
10	90	80	II		
50	135	93	40		
100	155	112	53		
250	141	. II5	78		
350	125	119	61		

Мелкие частицы продуктов износа имеют оболочку из смолистых веществ — структуру графита. Общая масса крупных частиц продуктов износа в моторном масле сначала возрастает, а затем снижается. Содержание железа в частицах износа повышается с увеличением общей их массы.