

УЛК 633.16:581.132:631.559

ВЛИЯНИЕ СЛАБОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ НА ПОЛЕВУЮ ВСХОЖЕСТЬ, ПРОЦЕСС ФОТОСИНТЕЗА И УРОЖАЙНОСТЬ ЯЧМЕНЯ

Л.Е. КИРИЛЕНКО, ст. преподаватель (БГСХА)

Ученые сегодня ищут новые пути повышения урожайности сельскохозяйственных культур, разрабатывают новые технологии, способные не только значительно повысить продуктивность сельскохозяйственных культур, но и не нарушить экологического равновесия земной биосферы. Из поставленной цели видно, что решение этой задачи может быть осуществлено только совместными усилиями ученых различных специальностей. Здесь тесно в единый узел связываются вопросы, решаемые физиологами и биохимиками растений, специалистами по теории автоматического управления, современных разделов математики, физики, вычислительной техники.

Учитывая вышесказанное, следует искать новые пути получения более высоких урожаев зерновых культур. В последние годы широко внедрялись интенсивные технологии возделывания полевых культур. Однако они базировались на применении традиционных интенсифицирующих факторов. К таким факторам относится повышение дозы удобрений, применение ядохимикатов против болезней, вредителей и сорняков, ретордантов против полегания растений и др. В условиях относительно высокого уровня химизации земледелия и нередкого нарушения агротехнических требований при использовании химических реагентов, возникла реальная опасность загрязнения растениеводческой продукции и окружающей среды. С экономической точки зрения это также не всегда оправданно. Эти и другие негативные последствия одностороннего, преимущественно техногенного подхода к интенсификации растениеводства и очевидная ограниченность этой стратегии, особенно наблюдаются в настоящее время в Республике Беларусь. Существует дефицит удобрений, пестицидов, энергетических ресурсов и др. Все это вместе взятое предопределило поиск альтернативных систем земледелия. В этом направлении определенную заявку сделал доктор технических наук, профессор Тульского технического университета О.В. Мартынов. Он разработал установки и приборы, позволяющие интенсифицировать выращивание полевых культур с полным соблюдением природоохранных мероприятий. Применение электромагнитного излучения является экологически чистой технологией, что актуально в современных условиях, особенно для Беларуси.

В наших исследованиях применялся прибор "Резонанс", разработанный под руководством О.В Мартынова. Этот прибор дает слабое электромагнитное излучение. В качестве излучателя используется комплект специально подобранных светоизлучающих диодов на частотах инфракрасного диапазона с суммарной энергией излучения до 1,5 милливатта. Частота излучения 1013-1014 Гц. Общий ток излучателя до 20 миллиампер. Прибор питается от стандартной батареи типа "Корунд" или "Крона" и не создает вредных излучений. Ручной, переносной прибор, небольших размеров, удобный в эксплуатации. Блок излучателей имеет вес 0,35 килограмма, блок питания — 0,15 килограмма. С помощью данного прибора облучались семена ячменя и вегетирующие растения в фазе кущения и выхода в трубку. Наиболее эффективным расстоянием от прибора до обрабатываемой культуры является 0,1-1,2 м. В наших опытах это расстояние составляло около 0,1 м.

Методика исследований.

В течение 1995-97гг. нами проводились опыты по облучению ячменя слабым электромагнитным излучением. Опыты проводились на опытном поле кафедры растениеводства. Почвы дерново-подзолистые, среднесуглинистые, слабокислые, среднеобеспеченные питательными вешествами. Учетная площадь делянки 16 м². Повторность четырехкратная. Схема опытов следующая: 1. Контроль (без облучения). 2. Облучены семена перед посевом в течение 5 мин, 10 мин, 15 мин 3. Облучены семена перед посевом в течение 5, 10 и 15 мин и вегетирующие растения в фазах кущения и выхода в трубку.

1. Химический состав зерна.

		Протеин			Клетчатка			Зола		
Вариант		1995	1996	1997г	1995	1996	1997	1995	1996	1997
		год	год	од	год	год	год	год	год	год
Контроль		13,08	13,10	14,08	4,29	4,0	4,35	2,28	2,52	2,23
Облу-	5	13,64	13,10	14,02	4,39	4,46	4,38	2,08	2,63	2,22
чены	МИН				ĺ	}		1		
семена	10	14,09	13,80	14,40	4,45	4,16	4,41	2,08	2,74,	2,30
}	ми									
	15	14,27	13,60	14,34	4.41	4,15	4,34	2,05	2,81	2,26
	МИН					ļ		ļ	1	
Облу-	5	14,77	13,90	14,49	4,56	4,33	4,21	2,08	2,45	2,24
чены	МИН					1			t	
семена									<u> </u>	
И	10	14,82	13,40	14,23	4,49	4,63	4,43	2,22	2,67	2,25
вегепи	МІ∕ІН					1			1	
рую-	15	14,49	13,70	14,82	4,46	4,80	4,37	2,04	2.87	2,38
щие	мин	11,15	13,70	17,02	7,70	1,00	7,37	2,04	2.07	2,36
расте-	14TT T.				į					
КНИ		14.02	12.50	14.57	4.42	4.70	121	2.06	2.60	2 20
Облучены		14,83	13,50	14,57	4,42	4,70	4,34	2,06	2,60	2,30
вегетирую-					1			1	an a	[
1 -	асте-						•	• 1		
ння		<u> </u>				<u> </u>			<u></u>	

4. Облучены только вегетирующие растения в фазах кущения и выхода в трубку.

Целью настоящих опытов было изучение формирования урожая ячменя под действием слабого электромагнитного излучения. Кроме того, изучалась зараженность семенного материала гельминтоспориозом и фузариозом, для этого исследовались семена, полученные в вариантах с различным временем облучения. Изучался процесс фотосинтеза в посевах ячменя. А также исследовалось качество полученного зерна. Качество зерна, как и любого другого растительного сырья, зависит от двух групп факторов: наследственных особенностей культуры и сорта и условий их возделывания. Среди агроприемов выращивания зерновых культур нет ни одного, который бы в той или иной степени не влиял бы на качество, то есть, можно сказать, что качество зерна создается в поле. Действенным средством повышения качества урожая зерновых культур является защита от полегания посевов, вредителей и болезней растений. На содержание основных химических веществ в зерне и его технологические свойства оказывают влияние технологии возделывания культур. Применение интенсивных технологий выращивания определенных сортов позволяет получать качественное зерно.

Результаты исследований.

В наших опытах изучалась полевая всхожесть семян в зависимости от времени облучения перед посевом. Изучалось влияние на всхожесть трех ре-

жимов облучения семян -в течение 5 минут, 10 минут и 15 минут.

В 1995 г. полевая всхожесть семян по вариантам опыта колебалась в пределах 79,8-85,5%. При облучении семян в течение 15 минут получили наибольшую всхожесть-85,5%. Наименьшая полевая всхожесть была на контроле -79,8%.

В 1996 г. полевая всхожесть в опытах составляла 70-86%. Варианты с облученным семенным материалом имеют более высокую полевую всхожесть, чем на контроле (83,2-86,0%). Полевая всхожесть на контроле составила 71,5%. Полевая всхожесть в варианте, где облучались только вегетирующие растения, была наравне с контролем.

В 1997 г полевая всхожесть на опытах была довольно высокая и составила 86,5-88,0%. Варианты с облучением семян 5 мин не отличались от контроля. Увеличение временной экспозиции до 10-15 мин несколько повысило полевую всхожесть с 86,5 до 88,0%.

Анализируя полученные в опытах данные, можно отметить, что полевая всхожесть повысилась при облучении семян в течение 5 минут в среднем за годы исследований на 5,6%. При облучении семян и вегетирующих растений получен приблизительно равный результат (5,6%). Увеличение времени облучения до 10 минут дало повышение полевой всхожести до 6,3%. Соответственно при облучении семян и вегетирующих растений -6,2%. Наибольшие показатели полевой всхожести получены при облучении семян в течение 15 минут -7,2%. Вариант с облучением семян и вегетирующих растений по сравнению с контролем дал увеличение полевой всхожести на 7,4%. В варианте с облучением только вегетирующих растений семена перед посевом не облучались. Сравнивая полевую всхожесть в этом случае (79,1%), можно отметить, что полевая всхожесть на уровне контроля (79,2%).

Из проведенных исследований можно сделать следующие выводы: наиболее эффективным оказался вариант с облучением семян в течение 15 минут, повышение полевой всхожести по сравнению с контролем в этом случае достигло 7,4%. В других вариантах получена также прибавка полевой всхожести от 5,5 до 6,6 %.

В наших опытах изучался химический состав зерна. В среднем по химическому составу зерна ячменя имеют следующие показатели: зола — 2,5%, протеин — 9,8%, клетчатка — 4,4%. Исследуя химический состав полученного урожая в годы исследований, особое внимание уделялось содержанию основных показателей: золы, протеина, клетчатки. Кроме того, изучалось содержание в зерне фосфора, кальция, калия, переваримой клетчатки, переваримого протеина, кормовых единиц в килограммах корма, содержание сухого вещества.

Анализируя полученные результаты, можно заметить, что на протяжении 1995-1997гг. содержание золы соответствовало норме, содержание клетчатки также соответствовало норме. Содержание протеина было выше среднего, как на контроле, так и по вариантам (табл. 1). В наших исследованиях изучалось также, как влияет слабое электромагнитное излучение на процессы фотосинтеза. Предыдущие исследователи в своих опытах, результаты которых изложены в материалах [2-3], отмечали, например, что переменное магнитное поле 4 кА/м ускоряет фотохимические процессы в хлоропластах на 13%, фосфорилирование - на 220% и на 13% увеличивает активность АТФ-азы. В наших исследованиях изучался хол формирования площади листьев, динамика и интенсивность накопления сухого вещества, выявлялись периоды максимального и минимального накопления сухого вещества.

Как известно, урожай, в основном, создается в процессе фотосинтеза, когда в зеленых растениях образуется органическое вещество из диоксида углерода, воды и минеральных веществ. Энергия солнечного луча переходит в энергию растительной

биомассы. Эффективность этого процесса и в конечном счете урожай зависят от функционирования посева как фотосинтезирующей системы. Урожай является результатом сложного взаимодействия ряда физиологических процессов. Однако, основная часть урожая - 90-95% его сухого вещества создается в процессе фотосинтеза[1]. Вопросами взаимосвязи продуктивности фотосинтеза и урожая занимались многие исследователи. В исследованиях многих ученых отмечено наличие прямой связи между площадью листьев и урожаем [2, 6]. Однако Устенко [6] указывает, что урожай растет не всегда параллельно с ростом площади листьев, а только при увеличении ее до определенных пределов, что наивысший и наилучший урожай по качеству можно получить только в посевах, обладающих оптимальной площадью листьев и оптимальным ходом ее формирования. Ничипорович отмечает, что оптимальной площадью листьев в посеве данного растения и в данных условиях называется такая, при которой данный посев может совершать наибольшую фотосинтетическую работу, или, иначе говоря, образовать в течение суток наибольшее количество сухой биомассы. Для этого площадь листьев должна быть большой. Однако с ростом площади листьев в посевах при прочих равных условиях ухудшается средняя их освещенность, а в связи с этим снижаются средние показатели интенсивности фотосинтеза. Ничипорович, Строгонова и другие [4] считают, что для получения высоких урожаев необходимо, чтобы площадь листьев в посеве быстро достигала 40-50 тыс. м²/га и по возможности долго сохранялась в активном состоянии на этом уровне.

2. Площадь листьев растений ячменя, тыс. м².

Число,	Контроль		Облучены		
месяц		5 мин	10 мин	15 мин	вегетирую- "
					щие
		}			растения
30.05	16,0	16,0	20,2	19,8	15,5
10.06	74,4	100,0	134,2	111,1	98,5
20.06	117,6	180,0	198,9	209,8	162,8
27.06	251.8	402,5	385,8	318,6	276,4
4.07 287,9		330,5	330,0	246,7	238,3
15.07 268 ,2		278,7	160,2	293,0	231,3
23.07	76,2	8 6,6	82,6	87,8	85,5
Число, мес	Число, месяц Контроль		Облучены семена и вегетирующ		
		5 мин	{	10 мин	15 мин
30.05	16,0	16,0		15,84	15,5
10.06	74,4	89,75		111,2	98,5
20.06	117,6	188,4		237,4	162,8
27.06	251,8	305,8		362,8	276,4
4.07	287,9	228,9		285,0	238,3
15.07	268,2	205,1		214,4	231,3
23.07	76,2	100,1		174,2	175,5

Формирование урожая зависит не только от площади листьев, но и от времени их функционирования. Фотосинтетический потенциал (ФП) может быть определен за любой период времени, например, за декадные, межфазные периоды или в целом за вегетационный период и объединяет эти показатели. По мнению [5] для получения высоких урожаев необходимо выращивать посевы с достаточно высокими показателями фотосинтетических потенциалов. Позднеспелые культуры и сорта, способны сформировать более высокие ФП и урожай, чем скороспелые. Для

скороспелых форм $\Phi\Pi$ должен составлять 1,5 – 2 млн м² дн/га, для среднеспелых – 2,5 –3,0 и для позднеспелых – 3,5 млн м² дн/га.

Анализируя табл. 2, можно сделать вывод, что увеличение площади листьев происходило быстрее в вариантах с облучением семян и вегетирующих растений. В вариантах с облучением только семян, этот показатель также выше, чем на контроле. Облучение только вегетирующих растений также дало

3. Показатели фотосинтетической деятельности посева

Вариант		Средняя площадь листьев за период, тыс. M^2 /га			
Контроль (без об	<u> Блучения)</u>	46,10	2489,4		
Облучены	5 мин	51,30	2770,2		
семена	10 мин	51,40	2775,6		
	15 мин	53,80	2905,2		
Облучены	5 мин	58,05	3134,7		
семена и вегетирующие	10 мин	95,02	5131,1		
растения	15 мин	95,50	5157,0		
Облучены вегетирующие растения		50,50	2727,0		

увеличение площади листьев, в сравнении с контрольным вариантом. Фотосинтетический потенциал посевов также имеет аналогичную зависимость по вариантам (табл.3).

Исследуя, как отразилось облучение растений в конечном счете на урожайность ячменя, можно сделать следующие заключения:

В 1995 году урожайность ячменя составила на контроле 27,8 ц/га, так как сложились неблагоприятные погодные условия. Прибавка урожая составила в зависимости от варианта от 4,4 ц/га до 10,0 ц/га. В 1996 году при урожайности на контроле 58,4ц/га, прибавка урожая составила по вариантам от 3,5 до 17,9 ц/га, что в процентном отношении приблизительно соответствует показателям 1995 года. В 1997 году при урожайности на контроле 51,1 ц/га, прибавка урожая составила от 1,8 до 6,2 ц/га. Таким образом, самым продуктивным оказался вариант с облучением семян в течение 15 мин.и вегетирующих растений. При облучении только семян перед посевом прибавка урожая за годы исследований в варианте с облучением в течение 15 мин составила от 5,5 до 16,5 ц/га, что в процентном отношении составляет от 10,8 до 28,4%.

Выволы:

- 1. Облучение семян слабым электромагнитным излучением привело к увеличению полевой всхожести. Наилучший результат получен в варианте с облучением семян в течение 15 мин.
- 2. Обнаружено влияние слабого электромагнитного излучения на процесс фотосинтеза. При этом увеличились такие показатели, как площадь листьев у облученных электромагнитным излучением растений ячменя, фотосинтетический потенциал.
- 3. Урожайность ячменя находится в зависимости от облучения вегетирующих растений. Наилуч-

шие результаты получены в варианте с облучением семян в течение 15 минут с последующим облучением вегетирующих растений.

4. Данный прибор наиболее реально применять для облучения в первую очередь семенного материала непосредственно перед посевом. Облучение вегетирующих растений в условиях сельскохозяйственного производства связано с некоторыми трудностями, так как посевы зерновых занимают большие площади. Но, возможно, ученые найдут новые решения этой задачи.

Литература

- 1. Владимирский Б.М., Кисловский А. Д. Солнечная активность и биосфера. –М.: Знание, 1982. С. 62.
- 2. Материалы Второго Всесоюзного совещания по изучению влияния магнитных полей на биологические объекты. (24 –26 сентября 1969 г). –М., 1969. –281с.
- 3. Материалы Третьего Всесоюзного симпозиума по влиянию магнитных полей на биологические объекты /Под ред. А. С. Васильева. Ленинград, 1975. –240с.
- 4. Ничипорович А. А. Строгонова Л.Е. и др. Фотосинтетическая деятельность растений в посевах. //М.: Изд –во АН СССР, 1961. 130 с.
- 5. Посыпанов Г. С., Долгодворов В. Е., Коренев Г. В., Филатов В. И. и др. Растениеводство. -М.: Колос, 1997.-С. 3 163.
- 6. Устенко Г.П. Фотосинтетическая деятельность растений в посевах как основа формирования высоких урожаев. //Фотосинтез и вопросы продуктивности растений. М:, Изд-во АН СССР. 1963. —С. 37-70. (Труды АН СССР).