УДК 631.356.4

О ТОЧНОСТИ ИЗМЕРЕНИЙ КОМПОНЕНТОВ КАРТОФЕЛЬНОГО **BOPOXA**

И.Р. РАЗМЫСЛОВИЧ, к.т.н., профессор (УО БГАТУ); А.И. ФИЛИППОВ, ассистент (УΟ ΓΓΑΥ)

В Республике Беларусь картофель является одной из важнейших продовольственных и технических культур. В ближайшие годы валовый сбор его планируется довести до 8 млн. тонн.

Производство картофеля связано с большими энергетическими затратами, из которых около 70% приходится на окончательную операцию - уборку и послеуборочную обработку. В настоящее время трудоемкость производства картофеля в республике составляет около 500 чел.-ч/га. Применение средств механизации позволяет сократить в 3...5 раз затраты труда, в 2...4 раза время уборки и послеуборочной обработки урожая, снизить общие потери урожая почти на 30%.

При подборе клубней после кар-

тофелекопателя любой человек легко отличает клубень от камня или комка почвы и собирает в тару только клубни. Современные же картофелеубирать с поля только клубни, а соразмерные с клубнями примеси в виде камней и комков оставлять на поле. В этой связи в бункере комбайна получается картофельный ворох, который следует разделять на стационарном сортировочном пункте.

На кафедре механизации сельскохозяйственного производства УО «ГГАУ» разработано и продолжает совершенствоваться оригинальное устройство для разделения картофельного вороха, поступающего от картофелеуборочного комбайна, содер-

жащего вместе с клубнями значительное количество примесей в виде комков почвы, а иногда и камней [1].

Сущность разработок - это взвеуборочные комбайны не в состоянии шивание каждой частицы вороха, определение его трех взаимноперпендикулярных размеров и деление массы на произведение размеров. Полученные после операции деления коэффициенты для клубней и примесей имеют существенное различие. В этой связи по данному принципу может быть произведено полное отделение клубней от комков почвы и камней, соразмеримых с клубнями.

> На рис. 1 показана схема разработанной на кафедре механизации сельскохозяйственного производства УО «ГГАУ» лабораторной установки для разделения компонентов картофельного вороха, где 1 - весоизмерительная часть наклонной платформы; 2 – упругий элемент в виде кольца с тензорезисторами; 3 - горизонтальный транспортер; 4 - полозок копира; 5 - датчик длины компонента; 6 - датчик толщины компонента; 7 - подвижный ролик зажимного ручья; 8 - переменный резистор; 9 - электромагнит; 10 - пружина; 11 - делительный щиток; 12 фартук; 13 — блок управления; стрелки т, а, с, b - показаны входы в блок управления соответствующих сигналов; стрелка mk>abc - выход сигнала в электромагнит 9, в случае, если компонент вороха есть примесь; стрелка 14 - выход клубней картофеля; стрелка 15 - выход примесей; 16 - обрабатываемый компонент картофельного вороха.

Четкость работы данного устройства зависит от точности взвеши-

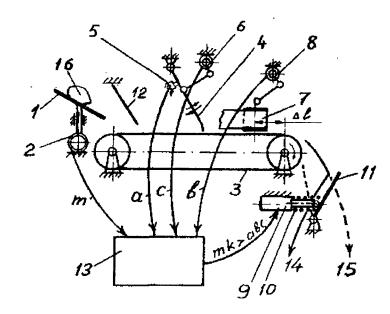


Рис. 1. Схема лабораторной установки для разделения компонентов картофельного вороха.

вания и определения размеров каждого компонента.

Погрешность измерений зависит от точности фиксации компонента вороха в зажимном транспортере, в зажимной ручей компонент может попасть так, что длинная сторона окажется вертикальной, а измерение величины пойдет по наименьшей стороне (камень может быть принят за клубень).

При абсолютной точности отклонения δ в измерениях массы и размеров компонента вороха равны нулю.

Нами принято, что при δ =5% масса клубня увеличивается на 5%, а все три его размера уменьшаются на 5%. Для камня же масса уменьшается на 5%, а размеры увеличиваются на 5%. В качестве примера взят клубень массой 85 г и камень массой 150 г и их размерами. Данные вычислений коэффициента раздела ε при указанных соотношениях приведены в табл. 1. По результатам вычислений построен график, представленный на рис. 2, где кривая 1 дана для клубей, 2- для камней.

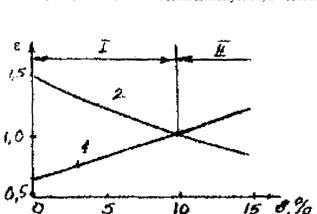


Рис.2. Влияние точности измерений массы δ и геометрических размеров ε на коэффициент раздела 1- клубни; 2-камни.

На графике прослеживается зона I, где может быть полное разделение клубней и камней по рассматриваемому коэффициенту.

Это будет наблюдаться при точности измерений $\mathcal S$ (отклонений) до 10%, затем (зона II), где разница между коэффициентами $\mathcal E$ нарушается, и клубень ошибочно может быть принят за камень и наоборот, что видно из табл. 1.

Результаты исследований позволили выделить предельные случаи отклонений \mathcal{S} , касающиеся всех четырех действующих на коэффициент \mathcal{E} величин. В действительности точность измерений одного из четырех параметров может быть и меньшей.

Однако при проектировании устройства подобного типа, следует стремиться к более высокой точности измерений массы и размеров и укладываться в 10-процентный интервал.

ЛИТЕРАТУРА

1. Патент РБ « 2721, 1998 г.

1. Влияние точности взвешивания и измерения размеров на коэффициент раздела

	Отклон	М, Г	Размеры, см			m
	ΕΗ ν Ε, Δ,		A	В	C	$=\frac{m}{abc}$
Клубень	0	85	7,5	5,0	3,5	0,648
	5	89,25	7,125	4,75	3,325	0,793
	10	93,5	6,75	4,5	3,15	0,977
	15	97,75	6,375	4,25	2,975	1,213
Камень	0	150	5,8	4,5	3,8	1,512
	5	142,5	6,138	4,703	3,944	1,252
	10	135	6,38	4,95	4,18	1,023
	15	127,5	6,67	5,175	4,37	0,845