

Рисунок 2 – Передний ведущий мост с дисковыми тормозами

1 — колесный редуктор; 2 — регулировочная прокладка; 3 — пружинная шайба; 4 — болт; 5 — колпачок; 6 — масленка; 7 — кольцо; 8 — обойма; 9 — подшипник; 10 — втулка; 11 — подшипник; 12 — штифт; 13 — болт; 14 — пружинная шайба; 15 — сапун; 16 — масленка;17 — бугель; 18,19 — втулка; 20 — пружинная шайба; 21 — болт; 22 — бугель; 23 — втулка; 24 — штифт, 25 — шайба; 26 — втулка; 27 — пробка; 28 — редуктор центральный; 29 — корпус ПВМ; 30 — пробка; 31 — полуосевой вал; 32 — стопорное кольцо; 33 — заглушка; 34 — прокладка; 35 — уплотнение; 36,43 — вилка шарнира; 37 — вилка сдвоенная; 38 — подшипник; 39 — ось; 40 — кольцо; 41 — обойма; 42 — крестовина с подшипниками; 44 — контргайка; 45 — винт; 46 — болт регулировочный; 47 — контргайка; 48 — тормозной механизм.

Выводы

Данная конструкция тормозов позволяет значительно больше времени обходится без технического обслуживания, повысить интенсивность торможения трактора (замедление составляет $3,21 \text{ м/c}^2$) и быстроту срабатывания привода тормозов. Эти преимущества дадут сокращение времени на маневрировании во время поворотов и разворотов машинно-тракторного агрегата, что повысит производительность и коэффициент использования рабочего времени смены.

Литература

- 1. СТБ ГОСТ Р 52302-2006 Автотранспортные средства управляемость и устойчивость. Технические требования и методы испытаний. Введ. 2006-09-01. Минск: Госстандарт, 2006. 21 с.
- 2. Правила ЕЭК ООН № 13 и № 13Н. Пересмотр 5. Единообразные предписания, касающиеся официального утверждения транспортных средств категорий M, N и O в отношении торможения.
- 3. Шарипов В.М. Конструирование и расчет тракторов. М.: Машиностроение, 2004г. 592с.

37. Г.И. Гедроить, к.т.н., доцент, С.В. Занемонский, Белорусский государственный аграрный технический университет г. Минск, Республика Беларусь

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ТЕХНИКО-ЭКСПЛУАТАЦИОННЫХ ПОКАЗАТЕЛЕЙ ТРАКТОРНЫХ ТРАНСПОРТНЫХ АГРЕГАТОВ

Введение

Повышение эффективности транспортных агрегатов путем улучшения их основных эксплуатационных характеристик сопровождается, как правило, необходимостью преодолевать различного рода ограничения, как изначально присущие данным транспортным агрегатам, так и возникающие в процессе улучшения их отдельных характеристик, что, в свою очередь,

сопровождается определенными материальными затратами. В связи с этим необходима комплексная технико-эксплуатационная оценка транспортных агрегатов с учетом достигаемого общего экономического эффекта [1].

Цель настоящей работы — оценить технико-эксплуатационные показатели современных тракторных транспортных агрегатов отечественного производства.

Основная часть

В настоящее время развитие сельскохозяйственных тракторных транспортных агрегатов идет в направлении увеличения доли выпуска специализированных прицепов и полуприцепов, самосвальных полуприцепов и прицепов для перевозки насыпных и навалочных грузов, увеличения транспортной скорости, повышения грузоподъемности, снижения удельной материалоемкости. В конструкциях прицепов предусматриваются централизованная блокировка бортов платформы, коническая форма поперечного сечения платформы, электронные устройства контроля заполнения платформы, электронные весы, централизованная автоматическая система смазки и т.д. [2, 3]. Для повышения маневренности и проходимости в конструкциях прицепов используются колеса с поворотными осями, ведущими мостами, шинами с регулируемым давлением. Устанавливают более широкие шины и используют шасси с тремя осями, что позволяет уменьшить уровень воздействия колесных движителей на почву. У самосвальных прицепов и полуприцепов предусматривается цельнометаллическая платформа с разгрузкой на три стороны или назад, установка надставных бортов. Также необходимо совершенствовать профиль пневматических шин [4].

Технико-эксплуатационные показатели сельскохозяйственных тракторных транспортных агрегатов предлагается оценивать показателями (таблица):

– удельная материалоемкость снаряженного прицепа (кг/кВт)

$$m_N = \frac{m_{\text{np.}}}{N_{\text{eff}}},\tag{1}$$

где $m_{\text{пр.}}$ – снаряженная масса прицепа, кг;

 $N_{\rm en}$ – номинальная мощность двигателя трактора, кВт.

– эксплуатационная энергонасыщенность (кВт /т)

$$N_m = \frac{10^3 \cdot N_{eH}}{m_{a}} = \frac{10^3 \cdot N_{eH}}{m_{np.} + m_{r} + m_{rp.}},$$
(2)

где m_a – полная масса поезда, кг;

 m_{Γ} – номинальная грузоподъемность прицепа, кг;

 $m_{\rm TP}$ – эксплуатационная масса трактора, кг.

коэффициент грузоподъемности η_г

$$\eta_{\Gamma} = \frac{m_{\Gamma}}{m_{\rm c}} = \frac{m_{\Gamma}}{m_{\rm Tp.} + m_{\rm Tp.}},\tag{3}$$

где $m_{\rm c}$ – снаряженная масса поезда, кг.

коэффициент нагрузки Г

$$\Gamma = \frac{m_{\rm a}}{m_{\rm c}};\tag{4}$$

Таблица – Технико-эксплуатационные показатели тракторных транспортных агрегатов

	Тяговый класс трактора по ГОСТ 27021-86								
	1,4		2	2			5		
	Базовая модель трактора								
Показатели	БЕЛАРУС-80.1		БЕЛАРУС-1221		БЕЛАРУС-1523		БЕЛАРУС- 3022		
	Модель прицепа								
	2ПТС-	ПСТ-		ПСТБ-	ПСТ-	ПСТ-			
	5	6	ПСТ-9	12	14	18	ПСТ-24		

1. Номинальная							
мощность двигателя			_				
трактора $N_{\rm eh}$, кВт	59,5		96		114		223
2. Эксплуатационная							
масса трактора $m_{\text{тр.}}$,							
КГ	3770		5300		6000		10500
3. Длина трактора	2.04		. ~		4.54		
$l_{\mathrm{Tp.}},\mathrm{M}$	3,84		4,5		4,71		6,1
4. Номинальная							
грузоподъемность							
прицепа m_{Γ} , кг	5000	6000	9500	12000	14000	18000	24000
5. Снаряженная							
масса прицепа							
$m_{\rm пр.}$, КГ	1800	1775	3460	3580	4500	5000	7200
6. Длина прицепа							
$l_{\rm пp.},{ m M}$	6,23	5,145	6,0	6,0	6,5	7,35	9,2
7. Длина платформы							
прицепа $l_{\text{платф.}}$, м	4,08	3,9	4,6	4,6	5,1	5,9	7,7
8. Снаряженная							
масса поезда $m_{\rm c}$, кг	5570	5545	8760	8880	10500	11000	18700
9. Полная масса							
поезда $m_{\rm a}$, кг	10570	11545	18260	20880	24500	29000	41700
10. Удельная							
материалоемкость							
снаряженного							
прицепа m_N , кг/кВт	30,25	29,78	36,04	37,29	39,47	43,86	32,29
11.Эксплуатационная							
энергонасыщенность							
N_m , $\kappa \mathrm{BT/T}$	5,63	5,16	5,26	4,60	4,65	3,93	5,35
12. Коэффициент							
грузоподъемности η _г	0,90	1,08	1,08	1,35	1,33	1,64	1,36
13. Коэффициент							
нагрузки Г	1,90	2,08	2,08	2,35	2,33	2,64	2,36
14. Коэффициент							
использования							
длины поезда k_l	0,41	0,43	0,44	0,44	0,45	0,49	0,50
15. Удельная							
снаряженная масса							
m_l , T/M	0,55	0,62	0,83	0,85	0,94	0,91	1,16

$$-$$
 коэффициент использования длины поезда [5]
$$k_l = \frac{l_{\text{платф.}}}{l_{\text{общ.}}} = \frac{l_{\text{платф.}}}{l_{\text{тр.}} + l_{\text{пр.}}};$$
 (5)

где $l_{\text{платф.}}$ – длина платформы прицепа, м;

 $l_{\text{общ.}}$ – длина поезда, м;

 $l_{\text{пр.}}$ – длина прицепа, м;

 $l_{\text{пр.}}$ – длина трактора, м.

— удельная снаряженная масса, т/м
$$m_l = \frac{m_c}{10^3 \cdot l_{\text{общ.}}} = \frac{m_c}{10^3 (l_{\text{тр.}} + l_{\text{пр.}})}.$$
 (6)

Наибольшей удельной материалоемкостью характеризуются тракторные поезда с тракторами тягового класса 2, 3. Одновременно эти же классы тракторных поездов характеризуются наименьшей эксплуатационной энергонасыщенностью (отношение мощности двигателя тягача к полной массе поезда). Значение данного показателя возрастает с повышением тягового класса трактора, достигая значения 5,35 кВт/т для поездов с тракторами тягового класса 5. Очевидно, данное обстоятельство приводит к ухудшению экономических показателей большегрузных тракторных поездов, что, однако, компенсируется многократным увеличением (до двух раз) удельной снаряженной массы (на единицу общей длины поезда), что совершенно необходимо в условиях действующих ограничений на габаритную длину транспортных агрегатов. Коэффициент использования длины поезда составляет 0,41 и 0,50 для поездов с тракторами класса 1,4 и 5 соответственно.

Выводы

Удельные технико-эксплуатационные показатели большегрузных тракторных поездов (с прицепами и полуприцепами грузоподъемностью 14 т и выше) превышают соответствующие показатели для поездов с тракторами тягового класса 2, однако уступают поездам с тракторами тягового класса 1,4. Сравнительный анализ приведенных данных показывает, что в отношении тракторных поездов важнейшие технико-эксплуатационные показатели (удельная материалоемкость, коэффициент использования длины поезда) относительно мало изменяются с повышением тягового класса трактора.

Литература

- 1. Краснокутский, В.В. Повышение производительности и экономичности тракторных транспортных агрегатов путем использования движителей прицепа [Текст]: дис. ...канд. техн. наук / В.В. Краснокутский. Челябинск, 1997. 225 с.
- 2. Электронный ресурс. Режим доступа: http://www.joskin.com.
- 3. Электронный ресурс. Режим доступа: http://www.fliegl.com.
- 4. Гедроить, Г.И. Совершенствование профиля пневматических шин для сельскохозяйственной техники / Г.И. Гедроить //Агропанорама. -2017, № 5. С. 2-5.
- 5. Перчаткин, Ю.В. Основные технико-эксплуатационные показатели прицепного состава тракторного транспорта [Текст] / Ю.В. Перчаткин // Грузовик: транспортный комплекс, спецтехника. 2014 N = 6. С. 16-20.

38. Г.И. Гедроить, к.т.н., доцент, С.В. Занемонский, Белорусский государственный аграрный технический университет г. Минск, Республика Беларусь

КОНСТРУКЦИОННЫЕ ТРЕБОВАНИЯ ПРИ СОЗДАНИИ ТРАКТОРНЫХ ПРИЦЕПОВ Введение

Транспорт в сельском хозяйстве обеспечивает технологические процессы внутри отрасли, а также связь с другими отраслями. От степени развития транспорта и эффективности его использования во многом зависят результаты всего сельскохозяйственного производства [1]. Номенклатура тракторных прицепов в настоящее время более обширна, чем номенклатура тракторов, с которыми они агрегатируются. Это обусловлено большим разнообразием перевозимых грузов, широким диапазоном условий эксплуатации тракторного транспорта и другими факторами. Перед отечественными производителями, выпускающими тракторный прицепной состав, стоят сложные задачи по совершенствованию данных транспортных средств с целью доведения их технического уровня до современных требований производств, в которых они используются.

Основная часть

Определяющим критерием при выборе ходовых систем для современной сельскохозяйственной техники является уровень воздействия на почву. В качестве нормируемых показателей согласно ГОСТ 26955-86 [2, 3] приняты максимальные давления на почву и нормальные напряжения в почве на глубине 0,5 м в зависимости от сезона и влажности почвы, выраженной в долях наименьшей влагоемкости почвы (НВ). При расчете максимального давления на почву по ГОСТ 26953-86 вводятся поправки, зависящие от типа почвы (W_1), нагрузки на единичный движитель (W_2), режима работы движителя (W_3), количества движителей, перемещающихся по одному следу (W_4), высоты протектора (W_5). В итоге окончательная норма по максимальному давлению W_4 0 на почву рассчитывается для каждого движителя по формуле:

$$q_{H} = q_{H} + q_{H} (\mathbf{M}_{1} + \mathbf{M}_{2} + \mathbf{M}_{3} + \mathbf{M}_{4} + \mathbf{M}_{5}),$$

где $q_{\rm u}$ – нормируемое максимальное давление на почву.