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Abstract—A constructive method is proposed for the solution of the Riemann—Hilbert problem
which is realized in the case of five singular points. The basic components of this method are the
logarithmization of the product of matrix functions and the determination of the parameters of a
related differential equation of Fuchsian type. The proposed method allows us to solve several related
problems, namely, to factorize the piecewise constant matrix functions, to find partial indices and to
explicitly solve the vector-matrix boundary value problem with the above piecewise constant matrix
function as a coefficient.

DOI: 10.1134/5199508022104017X

Keywords and phrases: Riemann—Hilbert problem, piecewise constant matrix, differential
equation of Fuchs type, monodromy group, logarithmization method, canonical matrix of
the boundary value problem, factorization, partial indices.

Dedicated to the memory
of Leonid Aleksandrovich Aksentiev

1. INTRODUCTION

In 1857, B. Riemann (see, e.g. [29]) posed the following problem: to find (construct) a system of
functions Y (2) = (51 (2) ..., ym ()7, satislying three conditions:

1. functions are analytic everywhere in C except at a finite number of points aq, as, . . . , ay;

2. the vector Y (z) possesses a linear transformation with a non-singular constant matrix V4

whenever z is orbiting around each singular point a (k=1,2,...,n), i.e. Y — V;Y, and
Vi Vo-...-V, = FE, where F is the m x m identity matrix;
3. the functions y1 (2) ,y2 (2) ..., ym (2) possess power type asymptotics of a finite order at each

singular point ag, (k =1,2,...,n),i.e. |y;j(2)| < Clz —ag|~*, V2,0 < |z — ax| < 7k, ap # oo and
lyj(2)| < Clz|%, Vz, |z| > ro for an appropriate a > 0.

The matrices Vp, Va,...,V,, generate the so called monodromy group ([2, 5]). Riemann found a
representation of the solution in the neighborhood of each particular singular point a,

Riemann also pointed out that the functions 1, ...,y will be solutions of an m-th order complex
differential equation with rational coefficients (see, e.g., [4]). In 1900 Hilbert included the problem of
construction of a Fuchsian differential system into his list of mathematical problems for the twentieth
century. This question is now known as the twenty-first Hilbert problem or as the Riemann—Hilbert
problem, see [5, 8].
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The Riemann—Hilbert problem can be formulated as the Riemann boundary value problem for
analytic vector-functions ([24, 25, 31]). The vector-matrix Riemann boundary value problem with
piecewise continuous algebraic coefficients was first solved in [10] by using Green’s function method.
The solution of the Riemann-Hilbert problem by reduction to the Riemann boundary value problem was
proposed in 1908 by Plemelj [27] (see also [28]).

For a long time it was thought that Plemelj had found a complete and positive answer to the question
of existence of a complex differential equation with a given monodromy group. Therefore interest in this
problem was moved to the effective construction of its solution, the most known are results by Lappo-
Danilevsky (functions of matrices method), Rohrl (fibre bundles method) (see, e.g. [5, 3]). Erugin [7]
considered the case of four singular points and showed, in particular, that the Riemann—Hilbert problem
is related to Painlevé type differential equations (among the recent constructive results we can mention
the paper[3]).

The gaps in Plemelj’s 1908 paper were first discovered by Kohn [21] and by Arnol’d and III'yashenko
[2]. In the late 1980s Bolibrukh (see, e.g., [4]) found the first negative answer to the question. In fact,
Plemelj’s conclusion is valid for the so-called “regular” (see, [4, p. 7]) variant of the Riemann—Hilbert
problem. An extended description of the modern state of the Riemann-Hilbert problem as well as the
main results by Bolibruch are presented in[4] and [5].

Although this problem has in general a negative solution, there are few cases when an existence of
the positive solutions can be proved (for 2 x 2 Fuchsian systems and any number of singular points this
is in Dekkers’ theorem [6]). Constructive procedures for solution to the Riemann—Hilbert problem is
known only for few cases. Thus, the solution for the systems of two unknown functions (m = 2) with
three singular points (n = 3) is given in [22]). We should also mention the paper [8], cf. [23, 30], which
is devoted to the connection between the factorization of piecewise constant m x m matrix functions
with n jumps and the Riemann—Hilbert problem (cases m =2, n =4 and m = 3, n = 3 are treated
there). Several constructive results related to the method developed in this paper are presented in [12—
19, 20]. The problem of construction of the differential equation of Fuchsian type is highly related to the
determination of accessor parameters which is not considered here, see[1].

The aim of our paper is to determine a procedure which makes the general (small number of unknown
functions and arbitrary number of singular points) case constructively solvable. We propose a novel
approach (logarithmization method) to the solution of the Riemann—Hilbert problem by bypassing of
the commutativity assumption of the generator (see [4]). [t generalizes Lappo-Danilevsky’s approach
and is based on an exact representation for In(V; - - - V). We limit our attention to the first nontrivial

case for which the problem is not solved, namely, for vector functions Y (2) = (y1, yQ)T (m = 2), and five
singular points (n = 5). The procedure has been checked to ensure that it is universal, i.e. that it works
after slight modifications in the case of six or more singular points and larger m, but its algoritmisation
is not yet done.

Within the paper we solve the following problems provided that the monodromy matrices are given.
Each of these problems has a particular interest.

1. the logarithmization method is developed, i.e. the method for an exact representation of the
logarithm of matrices Sec. 3;

2. explicitly determined, by applying the logarithmization method, so called the differential matrix
([5]) of the system of differential equation, Sec. 4;

3. the above system is reduced to a Fuchsian differential equation of the second order and the
fundamental system of its solutions is constructed Subsec. 4.1;

4. thelocal solution to the Riemann-Hilbert problem in a vicinity of each singular point is determined
Subsec. 4.2;

5. the Riemann-Hilbert problem is solved globally by gluing the local solutions into a unique global
solution Sec. 5;

6. the partial indices of the piecewise constant matrix are found and a solution to the corresponding
homogeneous Riemann boundary value problem with the piecewise constant matrix coefficient
and five singular points is constructed Sec. 6.
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Solutions of these problems are realized in the case (m = 2, n = 5). Moreover, intermediate results of
Subsec. 3.1 allow us to apply the same technique in the cases m =2, n =3, and m = 2,n = 4. The
obtained solutions ([12—14]) coincide with those known in the literature. We believe that the general
situation can be treated by using our method, it is a goal for our further study.

2. RIEMANN—-HILBERT PROBLEM

2.1. Riemann—Hilbert Problem for Two Unknown Functions and Five Singular Points (m = 2,n =5)

The Riemann—Hilbert problem in the case m = 2,n = 5 consists in the determination of a vector
function (or, equivalently, a system of two functions) Y (2) = (y1(2), y2(2))T, which is analytic in the
extended complex plane C except at five (different) singular points a1, a9, as, a4, as. This problem
we consider in the following class (see, e.g. [24], c¢i. [6]): Y(z) is supposed to be integrable in
neighbourhoods of ay,...,as (more precisely, |y;(z)| < C|z —ar|™®, 0 < |z —ax| < r) and almost
bounded in a neighbourhood of a5 = oo (the latter means that Y (z) is either bounded or has a logarithmic
singularity at a5 = 0o0). Note that the problem in other classes may be unsolvable (cf. [24]).

Let ag, Bx be eigenvalues of the matrices Vi, k = 1,...,5. We choose the branch of the logarithmic
function in such a way that p, = % Inayg, o = ﬁ In By, satisfy the conditions (which is possible since
A is a real number, see e.g. [4])

—1<Rep, <0, —1<Reo <0, A:Z(pk+0k)7 —-9<AKLO. (1)
k=1
Thus, the behaviour of the components of the solution at a5 = oo is determined by the numbers

p:= ps + ki1, 0 := o5 + ko, where integer numbers ki, ko are chosen in such a way that the so called
Fuchs relation is satisfied,

4
d lprtor)+pto=1, (2)
k=1
which is equivalent to the relation k1 4+ k2 = 1 — A. These numbers can be chosen as
|: :| |: A:| if Re P5 < Re 05,
[ } [2 A] iil Reos < Reps. (3)

Since the symmetry of relation (2) we can consider without loss of generality that Re p > Re o.
[t is known (see, e.g.[4]) that the solution to the Riemann—Hilbert problem can be represented in the
locality of each singular point by the following form

Y(z) = (yl(z)) — D, ((za’“)pk b (Z)) L O0<|z—ap <re, >0, k=1,23,4, (4)

y2(2) (z —agp)” vy (2)

Y(z) = (yl(z)) _ D, (ZP U5 (Z)) R ) (5)
ya(2) z277 w5 (2)

where Dy (k=1,2,3,4,5) transform the monodromy matrices Vj into a normal Jordan form, the
functions uy, (z) are analytic in the neighborhoods of points ay, and the functions vy (z) are either analytic
if py, # o, or have the form

1
v (2) = %ln (z—ag)ug (2) +wi (2) il pr=o0r, k=1,234, (6)
1 .
5 (2) = 5 naus (2) +ws (2) il ps =05, (7)

with wy, (z) being analytic in a neighborhood of the point ay, ux (ax) # 0, wi (ax) # 0, k = 1,2,3,4,5.
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2.2. Relation to the Matrix Differential Equation

Let Yi(z) = (yn(Z))’ Ya(z) = (ylg(z)) be two linear independent solutions to the Riemann—

y21(2) Yy22(2)
Hilbert problem. Then the matrix Y (2) = yulz) va2(2) satisfies the following matrix differential
Yy21(2) y22(z)
equation with five singular points aq, as, as, a4, a5 = 0o
4
day Uk
— =Y 8
dz ; z—ay (8)

where Uy, are so called differential matrices (note that in general the differential equation obtained from
the Riemann—Hilbert problem is not Fuchsian, i.e. not necessarily its differential matrix can have not
only first order singularities, see e.g. [6]). The constant matrices Uy, k = 1,2, 3, 4 are similar to matrices

U}, is similar to the matrix S = P
k=1 0 1-0
sides of equation (8) by a nonsingular constant matrix C' we arrive at the following differential equation

4 _
d(YC) _ oSS CTUC )

dz
k=1

Wy, = ﬁ In V}, and matrix Us = —

4
. Multiplying both

At the bypasses around the singular points ay,...,as the matrix (Y'C) is transformed as follows
(YC) — (VY C). Hence the columns of the matrix (Y'C') are linear independent solutions of the same
Riemann—Hilbert problem and this matrix satisfies the differential equation (9) with differential matrices
C_lUkC.

Therefore the differential matrices of the Riemann—Hilbert problem can differ only as in similarity

transformation. A method of construction of the differential matrices in the case of the Riemann—Hilbert
problem with two unknown functions is presented below in Sec. 4.

3. LOGARITHMIZATION METHOD

In this section, we describe in detail the logarithmization method for the product of matrices which
allows us to get solution to the Riemann—Hilbert problem not assuming any commutativity of the given
matrices. In order to show the essence of the method, we start with the case of the product of two and
three matrices (Subsec. 3.1). Further development of the method is presented in the next subsection
(Subsec. 3.2). For readers convenience we include the detailed description of the logarithmization
method into Appendix at the end of the paper.

3.1. Logarithmization Method for the Product of two and Three Invertible Matrices

Let V1, V3 be a constant nonsingular square 2 x 2 matrices. The equality In (V; - V5) =InV; +1In V5,
is satisfied only if V;, V5 are permutation matrices. Now we establish a relationship between the
logarithms of matrices Vi, Vo, V3 = V; - V5 for any (non-permutation) matrices.

Proposition 1. Let ay, By be the eigenvalues of the matrices Vi, k = 1,2,3 and px, = ﬁ

oL = ﬁ In By be the eigenvalues of the matrices Wy, = % InVi, k=1,2,3. Let the branches of the
logarithmic functions be fixed in such a way that |Re (pr, — ox)| < 1, k = 1,2, and the branches for
ps3, 03 be satisfied the following relation

In o,

p1+ 01+ p2+ 02 = p3+03. (10)
Letpg 75 03.
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0
Then the matrix S = (p3 ) can be represented as a sum of two matrices
0 o3
S3 = 51 + S, (11)
where
pro1—(p3—p2)(p3—02) [(p3—01)(03—p1)—p202]a
Sl — 03—p3 g3—pP3 (12)
p202—(p3—p1)(o3—01)  (03—p2)(o3—02)—p101
[o3—psla o3—p3
p202—(p3—p1)(p3—01) [p2o02—(p3—03)(o3—p1)la
52 — 03—p3 g3—pP3 (13)
(p3—=p1)(03—01)=p2o2  (03—p1)(03—01)=paos |’
[o3—psla o3—p3

and a is an arbitrary constant. Here Sy, ~ Wy, k = 1,2 (~ stands for similarity relation which, in
fact, preserves eigenvalues of the matrix).

Note that the logarithmization method can be applied to any Jordan form of the matrix. Let us show it
at the construction of the differential matrix of the Riemann—Hilbert problem with three singular points.
In this case it is suitable to use in of V3 = V4 V5. In this case the Fuchs relation becomes

pr+o1+pat+oa+p+o=1 (14)
By taken p3s = —p and 03 = 1 — ¢ we can see that (14) coincides with (10). Thus

-p 0 00 —p 0
p =51+ S5, or e : (15)
0 1-0 01 0 —0o

0 0
If VY = (a?’ ) is the Jordan form of the matrix V3, then the matrices S3 = (p ) and S5 =
0 Bs 0o

271
0o—-1 01
is one of the branches of the multivalued function % In E, moreover
N =51+ S5+ Ss. (16)

Let us show that representation (15) remains valid if a3 = 3 and the Jordan form of the matrix V3 has the

0 00
(’0 ) are different branches of the multivalued function 5 In Vi, and the matrix N = ( )

form Vy) = (a?’ 0 . Then by Lagrange-Sylvester formula [9] f(VZ) = f(a3)E + f/(a3) (V] — asE)
1 B3

0
we find S5 = 5= In Vy = (p ),where52 L

— 0
—ias - Thus we have in (16) ( P ) =57 + 5.
o p

-6 1—p

Matrix T = Lo adduce the matrix in the left hand-side to the diagonal form p 0 =
51 0 1—p
S|+ 54, where S, S} have the form (12), (13), respectively, with p3 = —p, 03 =1 — p. Therefore in
what follows we can use logarithmization method for any Jordan form of 2 x 2 matrices.
Corollary 1. If p3 = p1 + p2, 03 = 01 + 09, i.e the matrices S1 and Sy can be reduced to a
triangular form by a unique similarity transformation, then the matrix S may be presented in
the simple form

- 0 0
Sy = p1 C I p2 —C or S5 = P1 I P2 '
0 o1 0 o9 c o1 —c 09
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Proposition 2. Let oy, B be the eigenvalues of the matrices Vi, k =1,2,3,Vy = V1VoVs and
PE = ﬁ Inay, o = ﬁ In 5y be the eigenvalues of the matrices Wy, = ﬁ InVy, k=1,2,3,4. Let
the branches of the logarithmic functions be fixed as before. Let py # 4. Then the Jordan form
0

Sy = pa of the logarithm of the product of three nonsingular 2 x 2 matrices can be represented
0 o4

by a sum of logarithms of three matrices which are similar to Wy, k = 1, 2, 3, in one of the following form:

S c S9 —(1+17)c S TC
! + Itr)e]) | ’ , (17)
L op1+o1—s1 e P2+ 02— 82 2 p3+o3—s3
Y1 —72 3
51 d + 52 (I4+7)d + 53 Td \ (18)
d p1+o1—51 —(1+7)d p2+ 03— 59 Td p3+ o3 — 3

a4ip4 [p4 (0’4 — Pk — O'k) + proE — Tk], Y = — (Sk — pk) (Sk — O'k), Tk @are defined by the formu-

las T3 = P12012, T1 = P23023, T2 = P13013 — Zi:l POk —T1 — T3, T is a solution to algebraic equation
equation y172 + (71 + 73 — ¥2) T +v3 = 0, c and d are arbitrary constants.

Remark 1. Representations (17) and (18), are, in general, equivalent (are equal up to a
similarity transformation by a diagonal matrix). If the matrix Dy transforms Vy to its Jordan
form, and any of the matrices Vi, (k =1,2,3) are transformed to their triangular forms, then
vr = 0 and we can choose the representation that corresponds to the form of the triangular matrix
(upper or lower triangular form).

Note that as in Proposition I we can show that the logarithmization method can be applied to
any Jordan form of the matrix Wy.

Corollary 2. /f vy = —(s1 —p1)(s1 —o1) =0, then c1dy = 0. The following simpler matrix
representations are then possible for Sy:

S| =

0 S —c s c
Sy = p_l + _2 + 3 ,
B oy 2 patoz—s2 2 p3+o3—s3
72—73 s 2 s 3
54_ £1 d + 2 d + 3 d 7
0 o1 —d p2+ 02— 89 d p3+ 03— s3
0 s £ s B
Sy = P1 + 2 d + 3 d
0 o1 —d p2+ 02— 82 d p3+o3—s3

@Similar representations occur in the cases v9 = 0, y3 = 0.

3.2. Logarithmization Method for the Product of Four Invertible Matrices

— 0
Let us present the matrix S5 = P as a sum of four matrices S5 = S| + 59 + S3 + Sy,
0 1—-0
where S, ~ W), = ﬁ InV,, k =1,2,3,4. For this, we rewrite the matrix V5 := V4 - V5 - V3 -V} as the
following products of three matrices
Vs=Vi-Vo - (V3-Vy)=Vi- Vo Vay, (19)
Vs=V1-Va) - V3-Vy=Via-V3-Vy, (20)
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and apply formulas (17), (18). For further analysis we need to know not only the eigenvalues ag, Si of
the monodromy matrices Vj, but also the eigenvalues of the products Vi Vo, VaVs, VaVy, ViVo Vs, Vo V3V,
of these matrices and their logarithms.

We denote by ay p+1, Bk r+1 the eigenvalues of Vi 11 = ViViyr, £ =1,2,3, and by oy k41,542,
Bk k+1,k+2 the eigenvalues of Vi py1 42 = ViVir1Vire, k=1,2. We determine the following pa-
rameters pg g1 = 5 MOk kb1, Okt = 307 0 Brktts Pkl ht2 = 50 10 O ki1 ks Ok hb1 42 =
ﬁ In By, j+1,k+2, in such a way that branches of the logarithmic functions are fixed according to the
conditions

Phk+1 + Ok oyl = Pk + Pht1 + 0k + kg1,  [Re (pppr1 —onpy1)] <1, k=1,2,3,
Pk k+1,k+2 T Ok k+1,k+2 = Pk + Pk+1 + Pk+2 + Ok + Okt1 + Pk+2,
IRe (prkr1,k42 — Okpript2)| <1, k=1,2.

Proposition 3. Let ay, By be the eigenvalues of the matrices Vi, k = 1,2,3,4, and py, = % In oy,

o = ﬁ In B be the eigenvalues of the matrices Wy, = ﬁ InVy, k=1,2,3,4. Let the branches of
the logarithmic functions are fixed as above. Let p5 # o.

Then the Jordan form S5 = Ps

of the logarithm of the product of four nonsingular matrices
0 05
of the second order can be represented by a sum of logarithms of three matrices which are similar to

Wi,k =1,2,3, 4:

s c S —(14+m7)c
P N 2 ( 1)
L pr+or—s1 — ). P3t o3 —s3
S3 T1(1 + m)c s —T1T9C
n 1( ) n 4 172 7 21)
Al P2 08 = 83)  \~mng paton— s

where 11,7 are solutions to 172 4+ (1 + v34 — Y2)71 + Y314 = 0, Y1272 + (Y12 + 74 — ¥3)T2 + 71 = 0,
respectively, and cis an arbitrary constant.

If we replace 7, by % and take into account that v, = 734, then we arrive at another presentation of
the matrix Ss:

s TIC s —(1+71)c
P 1 N 2 (1+71)
% p1+ 01— 81 —ﬁ p3+ 03 — s3
N S3 (1+7m)c N S4 —ToC
(14:—?-2)(: p3+ 03— S3 —% P4+ 04— 54
=S+ S5+ S5+ 5y, (22)

as well as at the equivalent presentation

¥
Sy = 1 Tz_ld + 52 (1+‘i1)d
Tid p1+ 01— 81 —(14+m)d p3s+ 03— s3
7y
4 83 (1+$2)d i S4 _:2_4d
(1—|—7’2)d p3 + 03 — 83 —Tod pg+ 04— 84
= 51+ 5y + 55 + 51, (23)
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where ¢ and d are arbitrary constants,
_plo+prtor—1)+wp —wj
1+p—-0o
* * * *
OJ]_ = W234, w2 = W134, CU3 = w124, CU4 - w1237

) k:17273747

and 71, 7o are solutions of the following equations, respectively,
et + (2 +m = )T+ =0, 127 + (2 + 3 — )T+ 7 =0, (24)

[t follows from (22) that the above presentation of the matrix .S is determined uniquely up to similarity
transformation via a diagonal matrix. Therefore, the matrices in (22) and (23) are differential matrices of
the equation (8). It can be shown that the statement remains valid for another Jordan form of the matrix
Ws.

4. FUCHSIAN DIFFERENTIAL EQUATION WITH FIVE SINGULAR POINTS
4.1. Construction of the Differential Equation

Let us now construct the second order differential equation of the Fuchsian class, related to the
following matrix differential equation

4
dy(z):Y(z)Z Sk . or dY—Y(z)S(z), (25)

dz z— ay, dz

with respect to the unknown matrix Y'(z) = (y;;(2)) and matrices S}, as presented in (21), where
S(z) = (s4j(2)). Thus

4 4 4 4
Sk Ck d Pk — Ok — Sk
@) =2 o mee(e) =3 e (R) =) (e = ) T

k=1 k=1 k=1 k=1

/ /
E e, =0, E dr = 0,8, = px — Ok — Sk, SkSg, — Ckdy = PROE-
k=1 k=1

Matrix equation (25) can be written in the following scalar form

Y11 = S11Y11 + 52112,
Y12 = S12Y11 + 522¥12, (26)
Yoy = S11¥21 + 521Y22,
Yoy = S12Y21 + 52222
By changing the first equation of (26) to express y12,
1

— (), — 27
Y12 o1 (yn 811y11) (27)
and substituting it into the second equation, we arrive at the following differential equation:
/ /
y” — <811 + S99 + sﬂ) y' + <811822 — 5128921 — 8,11 + Sﬂsll> y = 0. (28)
521 S21

It follows from the third and the fourth equations of (26) that the function g9 is also a solution to
equation (28).

Now we reformulate equation (28), using the forms of the matrices Sj in (21). Note that Z% =

4 /
(Insg1) = <ln > Zf’;k> . By direct calculation we obtain
k=1
4
sy 1 1 1
So1  z—1b +z—b2 +;z—ak'
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where b1, by are the roots of the following quadric equation

4 4 4
d
2: 2 _ 2: _ _ 2: il
( akdk> z ( ardi(a1 + ag + as + ay ak)> Z — a1a9a30a4 ( " ) 0. (29)

k=1 =1 =1k
Since d; = dry,de = —d(1 + 11),ds = d(1 + 12), dy = —d7 we can rewrite (29) in the form
(a3 — a9 + 7‘1((11 — a2) + 7’2(&3 — a4)) 22 — ((ag — aQ)(al + (14) + 7‘1((11 — a2)(a3 —+ a4
+72(a3 — as)(ar + az)) z + ((a3 — az)aras + 11(a1 — az)azas + 72(a3 — ag)araz) = 0.

Further, we have

S11 + S22 + — ) Z'Dk+ak—1+ L + L
sa1 i Z—ak z—b  z—0by
511590 — 10801 — s18] —erdy  s18h + shse — c1da — cady
G—a) ) —a2)
po (st $2)(81 + 85) — (c1 + ¢2)(di + do) — s18] — 5985 + c1dy + cady N
(z —a1)? (2 —a1)(z — a2)
4

g w12 — o1 — g Wki — Skqi — Wk — W
_(zp_lall)2+ 12 — P101 — P2 2+... (z_ak + Z kj kj k J

(== a)(z = 02) 2 R CEry ERrsy
4
1 1 s Sk + 8
21 k k j
—s + ==511 = + E — E .
11 So1 <z—b1 z—b2>k:12—ak ey oy (z —a)(z — a;)

[t follows from Proposition 3 that

_plo+pr2+o12—1) +wiz —wszg]
81+ 89 = 1 +p_0 = S19.

Analogously
[p(o + prj + or; — 1) + wij — wij]
1+p—-0

Skt 85 = = Skj> (30)

where
*k *k kk kk k% *k
Wig = W34, Wgy = W12, Wiy = W23, W13 = W24, Wo3z = W14, Woy = W13. (31)

Substituting the obtained formulas into (28), we arrive at the following form for the solution of the
Riemann—Hilbert problem with five singular points

Theorem 1. Second order differential equation of the Fuchsian type, with five singular points
and a given monodromy group, can be presented in the form

4 4
" 1_Pk_0'k_ 1 _ 1 ’ Wk
y(z)—k(z z — ag z—b z—by y(2)+ E:(z:—ak)2

k=1

4 4
Wgj — Skj — Wk — Wj 1 1 Sk _
P e G 3 D= ECR U

ko j=1k#j] k=1

4.2. Local Solution to the Differential Equation

In a neighbourhood of each of the singular points aq,...,as, equation (32) has two independent
solutions (see e.g. [11], cf. [7])

u(z) = (2 — ap)™ Y BP (2 —ap)",
n=0
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ve(2) = (2 —ap)’* > CP (2 —a)", whenever pj, # oy,
n=0

1
vp(2) = 50 In(z — ag)uk(z) + (z — ar)’*wi(z), whenever ppr=or,k=1,...,4, (33)
s
us(z) =27y BY2",
n=0
vs(z) =277 Z C®) ™ whenever p#o
n=0
1
vs(2) = 5 In zug(2) + 2 Pws(z), whenever p=o. (34)
s
Here the functions wy(z) are analytic in the vicinity of the singular points ag,k =1,...,5, and the

coefficients ng), CT(lk) are defined from recurrence relations, after substitution into equation (32). In
the vicinity of points by and bs, equation (32) has two linear independent solutions

up, (2) =Y B (z—be)", vy (2) = (z—bp)? > CP (2 —b)", k=12 (35)
n=0 n=0
The point b; and/or by might coincide with one of the singular points arp(k =1,...,4). If the matrix S;

is triangular, then v; = 0 and d; = 0. Then if by linear transformation the point a; corresponds to 0,
then z = 0 is a root of equation (29) and b; = a; whenever 1 = 0.

Now we present the elements 12, yoo of the matrix Y'(z) in terms of the elements 411, y21. Substitut-
ing expressions for s91, $11 into (32) we then obtain

4

1 kl;ll(z_ak) / sk Ip(2) [, Lo
ym:%(z—bl)(z—bg) yll_zz—akyll :E@ yll_zz—akyll )

k=1 k=1

4
p(z) = [[(z—ar), a(2) =r(z—=b1)(z = bs) = (a5 — a2 + 71 (a1 — a2) + 2(az — qu)) 2°

— ((a3 — ag)(al + a4) + 7’1(&1 — ag)(a3 + a4) + 7’2(&3 — a4)(a1 + a2)) z
+ ((ag — ag)arag + 11(a1 — ag)azay + m2(as — aq)arasz) .
Analogously,
4

1 kl;[1(z_ ) / s Ip(z) S
V2= o (z = b1)(2 — b2) Yo Z m”l - E@ Yo Z z— aky21 '

k=1 k=1

Therefore, if ug, vy is a fundamental system of solutions to differential equation (32) in a neigh-
bourhood of the point ag,k =1,...,5, then the solution Y (2) to the matrix equation (25) in this

neighbourhood can be written in the form
10 10
= X(2) ; (36)
0d 0d

(2) .
g, 57 <u§€ - > Zf’zlkuk>
w 283 (4 3 )
where Dy, are the matrices transforming matrices Vi, k = 1,...,5, to their normal Jordan forms. The
order h of the determinant of the matrix X (2) at infinity is
h=Rep+(Rec+1)—2=Rep+Reoc—1,

~—|
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and the order of the first column of the matrix X (z) is hy = min {Re p, Re 0} = Re p. Since s1 + s2 +
s3 + s4 = —p, then the order of the second column of X (z) is hg = min {Re p,Rec — 1} = Re 0 — 1.
Hence h = hy + hy. Therefore we arrive at the following result (ci. [24]).

Theorem 2. Let ug, v,k =1,...,5, be a linear independent solutions of equation (32) in a
neighbourhood of the corresponding singular point ay, represented in one of the forms (33), (34).

4
Letp(z) = [ (z —ag),q(z) = r(z —b1)(z — ba) and by, by be the roots of the quadric equation (29).

Then the ma_trix

p(z) / 4 S
Uk g(2) <’“k e z—Zk“k>
(2) <
kg <”§f -2 zfﬁk”k>

is a local solution to the Riemann—Hilbert problem (i.e. solves equation (25)) in a neighbour-
hood of each singular point ay, k = 1,...,5. The matrix X (z) meets the following conditions:

a)det X(z) #0,Vz #ag, k=1,...,5;

b) the columns of X (z) belong to a chosen class of functions, specifically they are supposed to
beintegrablein a neighbourhood of ay, ... ,a4 and almost bounded in a neighbourhood of as = o;

c) the order of det X (z) at infinity is equal to the sum of the orders of its columns.

X(2) = Dy, (37)

5. GLOBAL SOLUTION TO THE RIEMANN—-HILBERT PROBLEM

The obtained solution exists not only in a neighbourhood of each singular point. An analytic
continuation of a local solution in a neighbourhood of a certain singular point does not necessarily
become the solution at another singular point. Thus, in order to obtain a solution over the whole
complex plane (i.e. the global solution), we need to relate the local representations to each other (i.e.
assemble these representations into a unique analytic solution). Note that analytic continuation of the
local solution corresponding a5 coincides with the starting local solution corresponding to a1 due to
fulfillment of the Fuchs relation. Possible direct calculation can be provided too.

The solution (37) to equation (25) in a neighbourood of each singular point ay, is determined up to

two constants, since the matrix Dy, that transiorms Vj to a normal Jordan form is not defined uniquely
and has the form

(Zf O) , il oy # By,

Dy = DTy, where Tj = 5 Eg (38)
k 6k> bl lf O[k = /Bka
Ek an

where Dy, are fixed matrices transforming V% to a normal Jordan forms, and the constants &, ey are
subjects for further determination. The fundamental system of solutions to differential equation (32) is
also determined up to two constant multipliers. Without loss of generality we fix values of the coefficients

B, e k=1,...,5 in(33), (34), eg. B =1,¢F =1,k =1,...,5. Since equation (32) has
only two linear independent solutions, the solutions wuy, vy and ugi1,vis1 satisfy the following linear

relations:
(uk(z)) — A, (Uk—i-l(z)) (39)
vk (2) vkt 1(2)

where Ay (i) are constant nonsingular matrices whose elements can be found via the formulas
-1
A, = [ 0) w(20) ) [ukia(20) tpa(20)
vp(20) v(20) ) \Wrs1(20) viyq(20)
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and zp is a fixed point in a common part of the convergence domains for the corresponding series.
Local solutions in neighbourhoods of points ax and axy; are analytic continuation of each other iff

wz) ) _poa, [ 2 Dy Uk 1(2)
vg(2) Vg11(2) V11(2)
Denoting My, (M“) = [),;ilf)k, we define dy,ex as being from the system TyAp = MyTi11,k =

ij
., 4. In particular, if p; # o1 and ps # 09, then such a system has the form

Dy, or, in notation from (38) DT}, = Dk+1Tk+1~

o 0\ (A A () a6 0
W o) m W ‘ (40)
0 & Aot Asy Ho1 Ho2 0 e
The solvability condition for system (40) has the form
1 1) (1
)‘gl)Ag;ﬂg;#gl) = )‘gz)>é1)ﬂgl)#g2) (41)

[f matrices V; and V5 are transformed by the same similarity transformation to the triangular form,
then relation (41) holds automatically. If not then we may rewrite (41) in the form

1 1 1

1), (1 1
)‘§2))‘gl) #gz)ﬂgl)

Since p1 # o1 and ps # 09, we can then take matrices Dy, in one of the forms

k k k k
D, = 1/§2) " U§2)(k) or Dy = oy —(k:éz) ) _(:)52) o k=1,2
ap =y By Va1 Va1
1 2 2 1
o (B =y = (o =) (B =) ) (a2 = Py
1
e (B = an) \~(ar =l + (e =D )ly) (o = o)) + (B =Dy

Hence by simple algebra we get
p sy = 3 W) T B — a1) 2 (us + Bio — arfs — azB),
pip sy = vy () 1B — a1) Haaa + Bra — anaz — Bi5a).
Hence condition (42) can be rewritten as

>\§11)>\gl2) a1+ P2 — (a1f2 + azf)

)\512) )‘gll) o aie + B2 — (a1a2 + ﬁ162) .

(43)

We note that neither the numerator nor the denominator of the ratio in (43) is non-vanishing. Moreover,
this ratio can not equal unity due to the non-singularity of matrices A; and Mj. Direct observation

shows that the recurrent relations for coefficients By(Ll) and 07(3) contain in the denominators only p1, o1
and do not contain the other pairs pa, 09; p3, 035 p4,04; ..., p,0. Analogously, recurrent relations for

coefficients Bg) and Cff) contain in the denominators only po, o2 and do not contain the other pairs

p1,01;P3,03; p4,04; - .., p,0. Therefore, the function f(p1,01;p2,02; p3,03; pa, 045 p12, 0125 - - - 5 P123,
AL . . . . . .
01935 ..30,0) = }b/\fﬁ is an entire function with respect to all of its variables excluding p1,o1; p2, 02;
12 21
p12,012 and does not include the values 0, 1,00. Hence, the function f depends only on p1, o1; p2, 09;

P12,012.

Substitute the following into (32): ps = o3(ws = 0); pgs = 04(wg = 0); p3g = 034(w3g = 0); pag =
P234 = P2;093 = 0934 = 02(w23 = Wao34 = CUQ) The Fuchs relation (2) then becomes P12+ 012 +p+
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o = 1. Hence we have P = —pP12,0 = 1-— 012. [t then follows W13 = W14 = W1, W23 = W2, W = W123 =
wi3. Therefore
_[p(a+p12+012—1)+w12—w34_ ) _[p(0+p3+03—1)+w3—w124_ )
S12 = =p12; S3= = 0;
1+p—0 1+p—0
Cplo+patos—1)tws—wizz
S4 = = O7
1+p—-0
Y12 = —(s12 — p12) (512 —012) =0, Y34 =712=0, 3 =7 =0.
From the first equation (24) we have 71 = —22— moreover the second equation is satisfied identically. It

Y2—n’
then follows from representation (22) that in equation (29) we have d; 4+ do = 0,d3 = d4 = 0, and that
equation (29) can be written in the form

(al — a2)22 + (a1 — ag)(ag + a4)z + (a1 — ag)a3a4 = O,

whose roots are z; = asz, 22 = a4. Thus we have from equation (32) that by = a3, by = a4, s12 =
P12, 513 = 51 + 83 = 81, S14 = 51 + 54 = 51, 523 = 52 + 83 = S2, S94 = Sz + S4 = 83, s34 = 0, and that
equation (32) can be written in the form

1l—p1—0 1—py—o0
y//+< P1 1+ P2 2>y/

z—a z — a9
P101 P202 P12012 — P101 — P202
+ + = 0. 44
((z S AL P o PR | R ) (*4)

Equation (44) is the Riemann differential equation (see [26]). Its solution can be presented via the Gauss
hypergeometric function (see [26]), 2F1(a,b;¢;2) = > %z”, ((q)r is the Pochhammer symbol,
n=0 "

(@o=1, (9)n=q(¢g—1)--- (¢ —n+1)) with parameters a = p; + p2 — p12,b = p1 + p2 — 012,c =
1+ p1—o1.
. RO Q) Q) .
From (40) it follows that we can take §; = ¢, &1 = mc, 09 = ﬁlz)c, €9 = @C, where ¢ is an
arbitrary constant. Analogously, we can define connections between v, dx, €5 in those cases when at
least one of the matrices Vi, k = 1,2, is transformed to the triangular Jordan canonical form.

6. PARTIAL INDICES AND SOLUTION TO BOUNDARY VALUE PROBLEM

The Riemann—Hilbert problem can be formulated as the Riemann boundary value problem for
analytic functions. To see this we draw a simple closed loop I' through our singular points. Then
bypassing the point ay the following transformation yields Y+ — V; - V4 -...- V.- YT =Y. Hence
we arrive at the boundary condition

YH(t) =AY~ (t), tel\{a,az,...,a5}, (45)

where A(t) = A, = (ViVa--- Vi)' t € (ag, ags1), An = E (note that we are looking for the solution
to (45) unbounded near each singular point as stated in condition (iii) of the Riemann problem).

We must now recall some definitions from the theory of boundary value problems corresponding to
the considered situation (see [24, § 126]). The matrix-function X (z), analytic outside the contour I', is
called the canonical matrix for boundary value problem (45) if it satisfies the following conditions:

1. XT(t)=A(t)X (t),t €T\ {a1,a2,...,a5};

2. det X(z) #0,Vz # ay,a9,...,as;

3. the columns of the matrix X (z) belong to the chosen class of solutions, namely, are supposed to
be integrable in a neighbourhood of a1, ..., a4 (i.e. satisfy power type asymptotics similar to that

in (iii) of Introduction) and almost bounded in a neighbourhood of a5 = oo;
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4. the order of the determinant of X (z) at infinity is equal to the sum of the orders at infinity of its
columns.

Thus the columns of the canonical matrix are formed of the special system of the linear independent
solutions to the boundary value problem (45) , installed as columns. The order of the determinant
det X (z) of the canonical matrix at infinity is called the index (or general index) of the boundary
value problem (45), and the integer parts of the orders of its columns are called the partial indices.
Theorem 3. Let up, vk, k=1,...,5, be linear independent solutions of equation (32) in a
neighbourhood of the corresponding singular point ay, represented by one of the forms (33), (34).

4
Let p(z) = [[ (z —ax),q(z) = r(z — b1)(z — ba) and by, by be the roots of the quadratic equation

k=1
(29). Then the matrix (37) is the canonical matrix of boundary value problem (45).
The orders of the columns of (37) at infinity are equal

-A
p2 =min{Rep,Rec —1} =Reo —1=Reps + [T]’

where A = i Pk + Ok
k=1

The partial indices of boundary value problem (45) are x1 = [p1] = [552] . x2 = [p2] = [£],
0<x1<50<x2<4,[x2o—x1| <L

The general index of boundary value problem (45) is equal x = x1 + x2 = —A,0 < x <09.

Problem (45) has | = x + 2 linear independent solutions in the class of analytic vector-
functions integrable in a neighbourhood of a1, . .. a4 (i.e. satisfy power type asymptotics similar
to that in (iii) of Introduction) and almost bounded at a neighbourhood of a5 = oo, which can be

found via the formula
Y(z) = X(2) (P’“ ‘”) ,
PX2 (Z)

where Py, (z), Py,(z) are polynomials of orders x1, x2 respectively.

Corollary 3. With the solution of the boundary value problem we can construct the solution of
the factorization problem of the piecewise constant matrix A(t),t € I. The partial indices of this
factorization are x1, xo. It follows from Theorem 3 that the partial indices are stable.

7. CONCLUSION

In this paper, we have proposed a method of construction of the solution of the Riemann—Hilbert
problem in the case of several singular points. To avoid additional calculations we have restricted
ourselves to the case of five singular points, but the method is universal and can be applied for larger
numbers of points. During the course of the construction we have also determined the canonical
matrix of the homogeneous boundary value problem with piecewise constant matrix coefficient. Thus
the solvability conditions and solutions of the boundary value problem can be written in the standard
way (see, e.g., [24]). Finally, the canonical matrix allows us to construct a solution for the factorization
problem of the piecewise constant matrix (cf. [23, 8]).
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Appendix

The proof of Proposition 1. Incorporating similarity of matrices Sy ~ W}, we rewrite relation (11)
in the form

0 s c s —c
3 _ 1 n 2 ’ (46)

0 o3 d p1+o1— 51 —d p2+ 02 — 52
which is equivalent to the following system of four algebraic equations
51+ 82 = p3,
p1+ 01+ p2+ 02 — 81— 52 =03,
s1(p1 + 01— 81) —cd = p1 - 01,
52(p2 + 02 — 82) — cd = p3 - 09.

(47)

We note that assumption (10) yields linear dependence of the first and second equations in (47). Hence
we can determine only three parameters of system (47). Simple algebra yields the solution of this system

i (p3 — p2)(p3 — 02) oy = P202~ (p3 — p1)(p3 — 01)

o3 — p3 03 — p3
The product ed can be determined either from the third or fourth equation.

cd = s1(p1+ 01— 51) — pro1 = —(s1 — p1)(s1 — 01).
The first factor s; — pq is
_ p1o1 — (p3 — p2)(p3 — 02) — p1(03 — p3)

L= 03 — pP3 '

Using (10) we can present this in the form

$1—p1 = p101 — p3(p1 + 01 — 03) — paoa — p1(03 — p3) _ (ps — p1)(o3 — 01) — paoa

o3 — pP3 03 — pP3
Similarly
$]— oy = (ps —a1)(o3 — p1) —P202'
03 — P3
By taking
1
c=(s1—o1)a, d=—(s1— pl)aa
with arbitrary constant a we arrive at the final representation for matrices S; and So. O

The proof of Proposition 2. Let py # o4. Then the matrix Sy reduces to the diagonal Jordan form

Sy = pa , which can be represented by a sum of three matrices
0 o4
3 Sk Ck
Si=S51+8+S5=>)_ ; (48)
k=1 \di S}
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where
Sp~Wis Sy =pr+ 0k — Sk, Cedy = —(sp — p)(sk, —ox), k=1,2,3,

3 3 3 3

/
E Sk = p4, E S = 04, E cx =0, E di = 0.
k=1 k=1 k=1 k=1

The aim now becomes finding an explicit representation for the matrices Si, k = 1,2, 3.
Let us write the product Vi - V5 - V3 in the following two forms

Vi=WVi - Vo - Va=V (Va-V3)=V; - Vs,

Vi=Vi-Va-Va=(V1-Va)-Va=Vig- V3,

(49)
(50)

denote by aws, f23 and aye, B2 the eigenvalues of the matrices Va3 and Vo, respectively, and define the

parameters

1 1 1 1
p23 = —1Inags, o093 =-—1IpPy, pi2=-—Inap, o12=-—1Inppy,
271 271 271 271

where the branches of the logarithmic functions are fixed according to the following conditions,
pe3 + 023 = p2 + p3 + 02 + 03, |Re (p23 — 093)[ < 1,
p12 + 012 = p1 + p2 + 01 + 02, |Re (p12 — 012)[ < 1.

Using representations (12), (13) to (49) and (50) we arrive at two formulas for Sy

S C — S —C
Sy =51+ 859+ 853 =51+ 5933 = o + P ! ! ,
dl 8/1 —dl g4 — 8/1

S =S 4G+ S5 =S +S5= [P T 4P B,
—d3 0-4_‘9% d3 8{3

where
o = [p101 — (pa — p23)(pa — 023)] _ [pa(0a — p1 — 01) + p101 — p23oas)]
04 — P4 04 — P4 ’
_ lp3os — (pa — p12)(pa — 012)] _ [paloa — ps — 03) + p303 — p12012)]
04 — P4 04 — P4
Here 512 ~ %ln(Vﬂ/g), 523 ~ %ID(VQV?,)

[t follows from (51), (52) that Sy = S19 — S1 = Sa3 — S3. Then, in particular,
S92 C2 _ P4 —83—S81 —C—C
dQ 8/2 —d3 — d1 04 — Sé — 8/1

[—pa(p2 — 02) — p101 — p303 + p12012 + P230723]
04 — P4 ’

Hence

S9 =

828/2 — (01 + C3)(d1 + d3) = P202.
To simplify relation (55) we apply the following identity.
Lemma 1.
det(S1 + S2 + S3) = det(Sy + S2) + det(S1 + S3) + det(S2 + S3)
— det(S1) — det(S2) — det(S3).

(57)
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Proof. [t follows from the elementary algebra and known relation for the determinant of the sum of
two 2 x 2 matrices

det(A + B) = det(A) + det(B) + tr(A)tr(B) — tr(AB).

O
Let us denote
1
Wwog = det(Sg + 53) = po3oo3 = det <2—7TZ In V23> R
1
wig = det(Sl + Sg) = p19012 = det <% In V12> . (58)
Then, it follows from (57) that
4
wig = det(Sl + 53) = Zpkdk — Wa3 — W12- (59)
k=1
Hence relation (55) can be rewritten in the form
5y = [p4(04 = p2 — 72) + p2os — W3] (60)
04 — P4
We now transform relation (56). We denote ~y;, := — (s — pi)(sk — ox). Then, since cxdy, = sis), —
PrOE = Vi, We see from (56):
Y2 — 71 — ¢3dy — crdz — 3 = 0.
Hence, either
C3 C1
o= —Y—Nn——7—=0 (c1#0,c3#0), (61)
C1 C3
or
dy ds
TN g =0 (d#0,ds #0). (62)
3 1
With r = z—i’ in(6l)orr = Z—i’ in (62) we obtain the following equation with respect to 7:
N = (m+3 —72)7+ 73 =0. (63)
[f v1 # 0, then the solution to (63) has the form
1
T=o <71 +s =1 (0 +9E+93) — 2w+ + 7273)) : (64)
_ -
Ifv1 =0, thenT = 72_373.
With known 7, we determine all entries ¢, di, of the matrices S, k = 1,2, 3.
lTr=2 thener=c cg=7c, co=—(c1+c3) =—(1+7)c, di =T, d2:_(11—27)c’ dy = 2,
where ¢ is an arbitrary constant, ¢ # 0.
Ifr= Z—i’, then d; = d, d3 = 7d, dy = —(dl—i-dg) = —(1—|—T)d, c] = %, Co = ——(1_7_3_)(1, d3 = ’%,

where d is an arbitrary constant, d # 0.

Therefore, we have obtained two representations of the Jordan canonical form of the logarithm of the
product of three nonsingular 2 x 2 matrices as sum of matrices:

0 s c s —(1+17)c s TC
P4 _ 1 i 2 ( ) i 3 ’ (65)
71

2 — 23
0 o4 = ptor—s Fne P2 T 02— 52 e P3 03— 83

p0) [ @ + ”2 G I i , (66)
0 o4 d p1+o1—s1 —(1+7)d pa+ 02— 59 Td p3+ 03 — S3
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where the parameters s, k = 1,2, 3, are defined in (53), (60), (54), respectively, 7 is determined from

equation (63), and ¢ and d are arbitrary constants.
The proof of Proposition 3. In the considered class of solutions, by Lemma 7 we have
det(S1 + Sa + (53 4+ S4)) = w12 + wasg + wWi3s — W1 — wWa — W3g =: W,
det((S1 4+ S2) + S5+ S4) = w123 + w3g + w134 — W12 — W3 — Wy =: W.
Therefore, we have two relations, either

W134 = W + W1 + wa + W34 — W12 — W34,

W34 = W + W3 + w4 + W12 — W34 — W123-

Let us write the first representation of the matrix S, corresponding to (20)

5 — s1 ca n S9 —(1 + 7’1)01 n 8?’4 T1C1
Z—i p1+ 01— S1 _U:ﬁ p2+ 02— 82 T?fl P34+ 034 — 534
=51+ S2 + S34,
where
o +p1+01—1) +wi — woz
§1 = )
14+p—0
_plo+pa+0o2—1) +ws — wiz
SS9 = 5
l1+p—-0
_ [p(o 4+ p3a + 034 — 1) + w34 — wio]
534 = 3
l1+p—0

Ve = —(sk — pp)(sk —0k), k=127 730 =—(834 — p3a)(s34 — 034),
the number 7y is a solution of equation (70)
N+ (71 + Y34 — Y2)7T1L + 34 = 0,
and ¢ is an arbitrary constant.

Let us write the second representation of the matrix .S, corresponding to (20)

Ss — S12 C2 " 53 —(1+72)co I S4 T2C2
L2 pra+ o012 — s12 “ e Pt o383 e P o1 s
= S12 + 53 + Y4,
where
_plo+p12+ o012 — 1) + w1z — W]
S12 = ’
l+p—o
_[plo+ ps+ 03— 1) + ws — wiay]
53 = ’
l1+p—-0
_ (o +pa+ 04— 1) + ws — wigg]
Sq4 = ’
l+p—0o

Y12 = —(s12 — p12)(s12 — 012); Yk = —(sk — px)(sk —0k), k=3.4,
and 79 is a solution to equation (72)
Y273 + (Y12 + 74 — ¥3)72 + 74 = 0,

while ¢y is an arbitrary constant.

O

(67)

(68)

(69)

(70)

(71)

(72)
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Comparing (69) and (71) we conclude that S; + Sy = S12 and S3 + Sg = Say, i.e.

S1 1+ S9 —TiC1 512 C2

= ; (73)
é(’Yl-Fll?Tl) p1+ 01+ p2+ 02— 51— 82 L2 pra+ 012 — 12
1 53+ 84 —C2 _ [ s34 T1C1 ‘ (74)
g(Z—j-i-ll—sTQ) p3+ 03+ ps+ 04— 83— 84 22 p3a+ 034 — s34
Now we will show that for co = —7y¢; relations (73) and (74) are satisfied identically. By Proposition 2,
_plo=1)+plo+ p12+ 012 — 1) + w1 + w2 — w134 — waz]
§1+ 82 =
1+p—-0
_ [p(o+p12 +1012 —Dtwip—ws] s1a. (75)
+p—o0
Analogously, it can be shown that s3 4+ s4 = s34. Now we check that the following relations hold,
1 1
- "2 2 d (M __ :734’
c1 147 c2 co\m2 147 TIC1
which, under the condition ¢ = —7¢q, take the forms
Y2 Y12 V4 3
_ = 12 d -2 = ~ay. 76
n 1—|-7'1 —T1 an T2+1+T2 134 ( )
From (69) and (71) it follows that the following relations are valid
72 Y34 V4 3
— — =0 d —-— = 0.
n 1+7 + Ty an o 14+m + 712
Direct calculations, however, show 712 = v34. Hence equality (76) is satisfied identically.
Therefore, we get the following representation of matrix Si:
Ss — s1 c N S9 —(1+m7)c
%1,014-01—81 —(11—;)0 p3 + 03— s3
s T1(1+7m)c s —T1T2C
+ 3 1( 2) n 4 172
ﬁ p3 + 03— 83 — s Pat o4 =S4
=51+ 52 + 53+ Sy, (77)
where 71, 9 are solutions to (70), (72), respectively, and c is an arbitrary constant. O
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