Полученный расчетный оптимальный размер заказа (50 мешков) не отличается от принятого в качестве первого приближения (50 мешков). Поэтому принятый размер заказа на уровне 50 мешков, при условии, что цемент будет доставляться автомобилем грузоподъемностью 5000 кг параллельно с другими товарами, является экономически оправданным решением.

Таким образом, доставка цемента посредством применения транспортных средств большой и особо большой грузоподъемности параллельно с другими товарами позволяет сократить размер заказа мешков с цементом на 50% и более по сравнению с ситуацией, когда цемент доставляется отдельно от других видов товаров.

Между тем сокращение размера заказа имеет определенное ограничение. Его размер не должен быть меньше величины потребления за время выполнения заказа. Так, в нашем примере, время выполнения заказа обычно не превышает двух дней. В этой связи, величина потребления за данный период составит в среднем 46 мешков с цементом (500 мешков/мес.: 22 раб. дня · 2 дня). Следовательно, с организационной точки зрения, размер заказа не должен быть меньше 46 мешков с цементом.

ЛИТЕРАТУРА

1. Дроздов, П.А. Основы логистики в АПК: учебник / П.А. Дроздов. – Минск: Изд-во Гревцова, 2012. – 288 с.

УДК 631.3.004.67

ОПТИМИЗАЦИЯ РЕЗЕРВА СОСТАВНЫХ ЧАСТЕЙ КОРМОУБОРОЧНЫХ КОМПЛЕКСОВ

Р.А. Шушлаков — студент 4 курса БГАТУ А.С. Шумчик — студент 2 курса БГАТУ Научный руководитель — к.т.н., доцент П.Е. Круглый

Сельское хозяйство республики оснащается новой высокопроизводительной техникой, среди которой кормоуборочные комплексы, выпускаемые ПО «Гомсельмаш». Для обеспечения надежной работы этой техники в период выполнения сельскохозяйственных работ необходимо иметь резерв составных частей машин.

Обеспечение потребности кормоуборочных комплексов в резервных составных частях рассматривается с позиции теории массового обслуживания как системы с ограниченным входящим потоком требований с ожиданием [1, 2]. В данном случае обслуживающие аппараты - резервные составные части (агрегаты, узлы, детали). Каждая составная часть обслуживает одновременно одно требование. Если в момент поступления в систему требования (отказавшей машины) имеется хоть один запасной агрегат (узел, деталь), немедленно начинается обслуживание. Оно продолжается до тех пор, пока на склад вместо выданной исправной составной части не поступит новая или отремонтированная. Таким образом, под временем обслуживания здесь понимается время оборота составной части (время от момента выдачи со склада до момента поступления вместо нее новой или отремонтированной). Экспериментальные исследования показали, что это время распределено экспоненциально [2]. Поток требований, поступающих в систему, есть поток отказов і-ых составных частей, требующих их замены, с параметром λ_i .

Среднее число отказавших машин, ожидающих замены составных частей при их отсутствии, определяется по зависимости [2]

$$m_{1} = \frac{\sum_{k=n+1}^{m} \frac{(k-n)m!\alpha^{k}}{n^{k-n}n!(m-k)!}}{\sum_{k=0}^{m} \frac{m!\alpha^{k}}{k!(m-k)!} + \sum_{k=n+1}^{m} \frac{m!\alpha^{k}}{n^{k-n}n!(m-k)!}},$$
(1)

где $\alpha = \frac{\lambda_i}{v_i}$; $v_i = \frac{1}{t_{io}}$; t_{io} — время от момента выдачи i -го агрегата со

склада до момента поступления вместо него нового или отремонтированного.

Среднее количество составных частей на складе

$$m_{3} = \frac{\sum_{k=0}^{n} \frac{(k-n)m!\alpha^{k}}{k!(m-k)!}}{\sum_{k=0}^{n} \frac{m!\alpha^{k}}{k!(m-k)!} + \sum_{k=n+1}^{m} \frac{m!\alpha^{k}}{n^{k-n}n!(m-k)!}}.$$
 (2)

Учитывая выражение (1) коэффициент простоя машины из-за отсутствия резервных составных частей выразится

$$k_{np.max} = \frac{\frac{(m-1)!}{n!} \sum_{k=n+1}^{m} \frac{(k-n)m!\alpha^{k}}{n^{k-n}(n-k)!}}{\sum_{k=0}^{n} \frac{m!\alpha^{k}}{k!(m-k)!} + \sum_{k=n+1}^{m} \frac{m!\alpha^{k}}{n^{k-n}n!(m-k)!}}.$$
(3)

Из зависимости (2) получаем коэффициент простоя резервной составной части

$$k_{np.a2p} = \frac{\sum_{k=0}^{n} \frac{m!\alpha^{k}}{k!(m-k)!} - \frac{1}{n} \sum_{k=0}^{n-1} \frac{m!\alpha^{k}}{(k-1)!(m-k)!}}{\sum_{k=0}^{n} \frac{m!\alpha^{k}}{k!(m-k)!} + \sum_{k=n+1}^{m} \frac{m!\alpha^{k}}{n^{k-n}n!(m-k)!}}.$$
(4)

Таким образом, учитывая вышесказанное, функционал оптимизации резерва составных частей в гарантийный период, с учетом ущерба от простоя машин из-за отсутствия запасных частей, а также издержек от хранения запаса, отнесенных к одной машине, имеет вид

$$\gamma_{a}(m, n_{i}) = \frac{C_{M}(1+y_{o})\frac{(m-1)!}{n_{i}!} \sum_{k=n_{i}+1}^{m} \frac{(k-n_{i})\alpha^{k}}{n_{i}^{k-n_{i}}(n_{i}-k)!} + C_{a} \sum_{k=0}^{n_{i}} \frac{(n_{i}-k)(m-1)!\alpha^{k}}{k!(m-k)!}}{\sum_{k=0}^{n_{i}} \frac{m!\alpha^{k}}{k!(m-k)!} + \sum_{k=n_{i}+1}^{m} \frac{m!\alpha^{k}}{n_{i}^{k-n_{i}}n_{i}!(m-k)!}},$$
(5)

где $C_{\rm M}$ – ущерб от простоя машины и работающего персонала;

 y_0 – коэффициент, учитывающий потери от простоя сопряженных средств механизации в долях от стоимости простоя основных машин;

m — парк машин;

 n_1 – количество запасных составных частей;

 λ_i – параметр потока отказов, требующих замены i-ой составной части;

 t_{io} – время оборота і-ой составной части;

 $C_{\rm a}$ – стоимость хранения одной составной части на складе, отнесенная к одному часу работы машины.

Результаты оптимизации количества запасных частей к комплексам высокопроизводительным кормоуборочным «Полесье-800» (КВК-800), необходимых для обеспечения их работоспособности в гарантийный период, приведены в табл. 1 (исключая запасные части к топливной аппаратуре и гидросистемам).

Таблица 1

Резерв запасных частей к кормоуборочному комплексу «Полесье-800» (КВК-800-16, КВК-800-36)

Номер по каталогу	Наименование	Количество на 100 комплектов, шт.
1	2	3
KBC-2-0104100	Редуктор	5
KBC-2-0110602	Пружина	4
KBC-1-0111020	Пружина	4
KBC-1-0111210A	Валец	5
KBC-1-0111290	Чистик	10
KBC-1-0111400A-01	Рама нижняя	2
KBC-1-0111440-01	Датчик камнедетектора	10
KBC-2-0112000	Редуктор верхних вальцев	4
KBC-2-0113000	Редуктор нижних вальцев	4
KBC-2-0114100A	Коробка передач	4
КВС-2-0115000Б	Аппарат измельчающий	2
KBC-2-0115421	Лист	10
KBC-2-0115503	Нож	2400
KBC-2-0115503-01	Нож	2400
KBC-1-0119000	Вал карданный	11
KBC-2-0130010	Рол ик	2
KBC-1-0130030	Шкив	4
KBC-2-0130070A	Рычаг	5
KBC-1-0130180	Винт	11
KBC-1-0130190	Пружина	2
KBC-1-0142000	Ускоритель выброса	4
KBC-1-0142103	Корпус	1
KBC-1-0142103-01	Корпус	11
KBC-1-0142170A	Стенка задняя	4
KBC-1-0142300	Поддон	3
KBC-1-0142400	Отсекатель	2
KBC-1-0142414	Лист	20
KBC-1-0142492	Лопасть	80
KBC-1-0142631	Болт	24
KBC-1-0142800	Вал ускорителя выброса	5
KBC-1-0143000	Основание силосопровода и механизм поворота	2
KBC-1-0143020	Основание силосопровода	2

Окончание таблицы 1

<u> </u>	2	3
1		
KBC-1-0143200	Корпус	2
KBC-1-0143611	Червяк	2
KBC-1-0143627	Колесо	2
KBC-2-0144000	Силосопровод	2
KBC-1-0144210-01	Вставка	10
KBC-1-0148310	Устройство доизмельчающее	2
KBC-2-0150150A	Коллектор выпускной	4
KBC-5-0150090	Коллектор выпускной	4
KBC-2-0151000A	Главный привод	10
KBC-5-0151000	Главный привод	10
КВС-2-0155150Б	Сетка	2
КВС-2-0155210Б	Пылесъемник	5
KBC-2-0601280	Тройник	2
KBC-2-0701110	Переключатель длин резки	6
KBC-1-0701430	Электропривод на опоре	8
KBC-1-0701430-01	Электропривод	5 .
KBC-2-0601280	Тройник	2
KBC-2-0701110	Переключатель длин резки	6
KBC-1-0701430	Электропривод на опоре	8
KBC-1-0701430-01	Электропривод	5
KBC-1-0701500-01	Датчик положения	8
KBC-1-0701550	Усилитель	8
KBC-1-0701590	Электромеханизм крышки	5
KBC-1-0701600A	Датчик камня заточного	8
KBC-1-0701800-01	Блок регулировки питающего аппарата	8
KBC-1-0701900	Блок управления измельчителем	8
K3K-10-0107200-02	Редуктор бортовой правый	2
K3K-10-0107200-03	Редуктор бортовой левый	2
УЭС-7-0109100	Гидроцилиндр	6
ПКК-0108673	Болт	8
3518020-46330	Гидроцилиндр блокировки диапазонов	4
41735-4201010-10	Вал карданный	11
KBC-1-0117150.3	Брус противорежущий «RiMa»	120
Д-280-1S-01	Двигатель ОАО «ММЗ»	5
900/9–9/P5ZL/32,5/ PAG/45	Вентилятор	5

Из табл. 1 видно, что на 100 комплексов «Полесье—800», необходимо иметь на складе дилерского технического центра по 4 редуктора верхних и нижних вальцев, 2 аппарата измельчающие, 2400 ножей барабана, 4 ускорителя выброса, 5 валов ускорителя выброса, 2 слосопровода, 2 основания силосопровода, 2 устройства доизмельчающие, 10 главных приводов, 2 переключателя длин резки, по 2 редуктора бортовые правые и левые, 120 брусов противорежущих, 5 двигателей Д—280—1S—01, другие запасные части.

Необходимо отметить, что отношение оптимального резерва запасных частей к величине парка комплексов «Полесье—800» с увеличением последнего уменьшается.

Заключение. Изложена методика оптимизации резерва составных частей обеспечения работоспособности комплексов для заготовки кормов. Приведены результаты оптимизации резерва составных частей для обеспечения работоспособности комплексов высокопроизводительных кормоуборочных «Полесье—800» (КВК—800).

ЛИТЕРАТУРА

- 1. Прабху Н. Методы теории массового обслуживания и управления запасами: Перевод с английского. М.: Машиностроение, 1989, 297с.
- 2. Миклуш В.П., Круглый П.Е. Обеспечение эксплуатационной надежности машинного парка технологических комплексов. В кн.: Опыт, проблемы и перспективы развития технического сервиса с.-х. техники. Материалы международной научно-практической конференции. Минск, БАТУ. 2005.

УДК 631.173.4(07)

ОПТИМИЗАЦИЯ ТРАНСПОРТНОГО ХОЗЯЙСТВА ПРЕДПРИЯТИЙ ТЕХНИЧЕСКОГО СЕРВИСА

В.Л. Ситкевич – студент 4 курса БГАТУ Научный руководитель – доцент, к.т.н. П.Е. Круглый

Наиболее эффективный вид транспорта и организацию перевозок выбирают путем сравнения нескольких вариантов по технико-экономическим показателям, то есть путем их оптимизации. При