Кучур С.С., к.т.н., доцент Международный государственный экологический институт им. А.Д. Сахарова Белорусского государственного университета, г. Минск, Республика Беларусь

ИССЛЕДОВАНИЕ НАВОЗА КРУПНОГО РОГАТОГО СКОТА В КАЧЕСТВЕ СУБСТРАТА ДЛЯ ПРОИЗВОДСТВА БИОГАЗА

Ключевые слова: Биогаз. Отходы животноводства. Сухое вещество. Органическое сухое вещество. Летучие жирные кислоты. Биогазовый комплекс.

Аннотация. Приведены результаты исследования навоза крупного рогатого скота (КРС) различных сельскохозяйственных предприятий в качестве субстрата для производства биогаза. Определены: содержание в сырой массе навоза сухого вещества, органического сухого вещества и концентрация летучих жирных (органических) кислот. Проведен оценочный расчет выхода биогаза.

Биоэнергетика — это своеобразный тренд на стыке интересов аграрного комплекса, энергетики и экологии. В экономике Республике Беларусь важную роль играет агропромышленный комплекс. В сельском хозяйстве республики насчитывает порядка 9 тыс. животноводческих ферм. Потенциальные возможности получения товарного биогаза от переработки годовой биомассы животноводческих комплексов могут составить более 1 млн. тонн условного топлива в год.

Исследования проведены в лаборатории биогазовых технологий кафедры энергоэффективных технологий Международного государственного экологического института им. А.Д. Сахарова Белорусского государственного университета. Лаборатория создана при финансовой поддержке Центра международной миграции и развития ФРГ (Centrum fur internationale Migration und Entwicklung (CIM).

Определены следующие показатели (таблица):

- содержание сухого вещества (CB)- доля обезвоженной смеси после высушивания при 105 °C;
- содержание органического сухого вещества (ОСВ) уменьшенная на содержание воды и неорганическую субстанцию

доля субстрата, получаемая путем высушивания при $105~^{\circ}\mathrm{C}$ и последующего каления при $550~^{\circ}\mathrm{C}$;

- содержание ОСВ в граммах на 1 кг сырой (исходной) массы субстрата (ОСВсм).

Вид субстрата	Содержание СВ, %	Содержание ОСВ, %	Содержание ОСВсм, г/кг
Навоз коров -с соломой	21,49	84,39	181,35
Навоз коров - жидкая фракция-смыв	10,7	84,91	90,85
Навоз телят до 6 месяцев	18,52	85,12	157,64
Навоз телят на откорме с 4 до 6 месяцев	21,85	85,43	186,66
Навоз телок 6 – 12 месяцев	19,66	86,38	169,82
Навоз телок на откорме старше 12 месяцев	20,82	90,11	187,61
Навоз нетелей 12 – 18 ме- сяцев	20,58	87,6	180,28

Содержание ОСВ в субстрате – одна из основных характеристик биологического сырья для производства биогаза. Учитывается, в первую очередь для:

- оценки качества субстрата и расчета выхода метана и биогаза в целом при проведении маркетинговых исследований на предмет строительства и обоснования мощности биогазовых установок;
- расчета удельной объемной нагрузки при проектировании или выборе реактора биогазовой установки;
- оптимизации режимов эксплуатации биогазовых установок, например, объемов загрузки реактора возможность качественного перемешивания сырья;
- расчета микробной нагрузки с целью поддержания стабильности процесса анаэробного сбраживания.

Соотношение органических кислот, (называемых также летучими жирными кислотами, эквивалентами уксусной кислоты), дает информацию о состоянии процесса анаэробного брожения. Бактерии уксусной кислоты из органических кислот производят исходные вещества для образования метана, а именно: уксус-

ную кислоту, углекислый газ и водород. Эти органические вещества являются источником питания для метанообразующих бактерий, которые превращают органические кислоты в биогаз. Исследования показали, что вариация концентрации летучих жирных кислот составляет 669 – 3309 мг/кг (при влажности субстрата при его загрузке в реактор (метантенк) для зимних условий 85 %). Данный показатель существенно влияет на потенциальный объем выхода биогаза. При стабильном процессе образования биогаза конорганических центрация кислот В составе исследуемого биологического сырья ниже 2000 мг/л. Если уровень превышает 3000 мг/л, то произойдет нарушение процесса. Накопление кислот вызывает задержку развития метановых бактерий вплоть до полной остановки процесса разложения.

На основании ТКП 17.02.05-2011 «Порядок расчета экономической эффективности биогазовых комплексов» выход биогаза от навоза КРС составляет 0,250-0,340 ${\rm m}^3/({\rm kr}$ OCB). При среднем значении этого показателя 0,295 ${\rm m}^3/({\rm kr}$ OCB) выход биогаза с 1 т сырой массы навоза КРС для обследованных предприятий составит от 19,2 ${\rm m}^3$ до 51,9 ${\rm m}^3$. Фактическое отличие объема выхода биогаза составляет 2,7 раза.

Проведенный анализ показал, что для решения практических задач, разработки технологий, адаптированных к условиям конкретных животноводческих комплексов, фактический выход биогаза необходимо рассчитывать на основании лабораторных исследований каждого вида субстрата.