цифровизации управления биопродукционным процессом производства тепличных овощей. Появление и широкое распространение новых технологий в теплицах значительно улучшило экономику овощ-

вых технологии в теплицах значительно улучшило экономику овощной отрасли, увеличив урожайность, при существенном снижении затрат. Это привело к ускоренному росту отрасли до 11 % в год.

Проводимые исследования в производственных условиях светодиодной установки для облучения растений томата по доминантному каналу контроля и управления влажностью ризосферы показали высокую эффективность системы интеллектуального

управления тепличного производства овощей.

Принципы интеллектуального управления биотехнологической системой тепличного комбината основаны на включении ценоза растений, как адаптивного биообъекта труда в автоматизированную систему выращивания овощей, управляемой по ответной реакции растений в режиме реального времени в высокой мере обеспечивает повышение эффективности функционирования системы облучения при всесезонном производстве овощей.

УДК 635.21.077: 621.365

Бывших А.А., студент

Руководитель Дубодел И.Б., к.т.н., доцент

ИННОВАЦИОННАЯ ТЕХНОЛОГИЯ ОЧИСТКИ СТОЧНЫХ ВОД

Длительное время развитие способов защиты окружающей среды от загрязнений вредными отходами шло по пути строительства очистных сооружений. Однако в последнее время становится все более очевидным, что наиболее рациональным решением проблемы является внедрение малоотходных и безотходных технологий. Применяемые на сегодняшний день методы и технологии очистки стоков являются несовершенными, и в ряде случаев не обеспечивают необходимую степень очистки и утилизацию всех побочных продуктов, образующихся в этом процессе. Кроме того, применяемые решения не всегда являются экономически обоснованными и энергетически эффективными.

Во всех случаях очистки стоков первой стадией является механическая очистка, предназначенная для удаления взвесей и дисперсно-коллоидных частиц. Последующая очистка от загрязняющих веществ осуществляется различными методами: физикохимическими (флотация, абсорбция, ионный обмен, дистилляция,

обратный осмос, ультрафильтрация и др.); химическими (реагентная очистка); электрохимическими; биологическими; прочими. В настоящее время наиболее эффективным является электрохимический метод, к которому относят электрокоагуляцию. Достоинства электрокоагуляции состоят:

- компактности установки, простате управления;
- отсутствие химических реагентов;
- невысокое потребление электроэнергии; малая чувствительность к изменению условий проведения очистки (рН среды, температура и т.д.).

УДК 631.22.077: 628.8

Водопьян П.А.

Руководитель Павликова Н.И., ст. преподаватель

ПРОГРЕССИВНЫЕ МЕТОДЫ УПРАВЛЕНИЯ ПРИТОКОМ ВОЗДУХА В СВИНАРНИКАХ

Одним из энергоемких технологических процессов в животноводстве является процесс создания оптимального микроклимата в производственных помещениях, полностью базирующийся на использовании тепловой и электрической энергии.

пользовании тепловой и электрической энергии.

Установленная мощность оборудования систем микроклимата свинарника и энергоемкость процесса зависят от степени теплоизоляции здания, количества испаряющейся влаги с поверхностей здания, уровня воздухообмена, который, в свою очередь, зависит от уровня температуры и относительной влажности наружного и внутреннего воздуха и теплогазовыделений животных. Поэтому снизить теплопотери здания и энергопотребление систем обеспечения микроклимата можно только комплексом мероприятий, включающих рационализацию объемно-планировочных решений зданий; улучшение теплозащиты зданий; снижением энергозатрат на вентиляцию и подогрев приточного воздуха за счет применения вторичных энергоресурсов, в частности утилизации тепла удаляемого воздуха; повышением уровня автоматизации систем микроклимата; применением эффективных способов воздухораздачи.

В настоящее время для достижения поставленной задачи предусматривается использование энергосберегающих установок для очистки и нагрева воздуха, использование контроллера приточной вентиляции ОВЕН ТРМ133.

вентиляции ОВЕН ТРМ133.