Кобринец В.П., к.т.н., доцент, Барашко О.Г., к.т.н., доцент, Коровкина Н.П., к.п.н., доцент

УО «Белорусский государственный технологический университет», Минск, Республика Беларусь РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПРОЦЕССА СУШКИ В БАРАБАННЫХ СУШИЛКАХ ПРИ ПРОИЗВОДСТВЕ КАЛИЙНЫХ УДОБРЕНИЙ

На основании анализа процесса сушки как объекта управления можно определить воздействия, оказывающие влияние на данный объект:

- возмущающие воздействия: входное влагосодержание подаваемого материала; расход материала; входное влагосодержание воздуха;
- регулирующие воздействия: расход теплоносителя; расход первичного воздуха; расход вторичного воздуха;
 - регулируемая величина: выходное влагосодержание материала.

Процессы тепло- и массообмена (влагообмена) в барабанной сушилке при сушке концентрата хлористого калия зависят от ее конструктивных характеристик (размеров, числа и профиля лопаток и т. д.), а также от технологических параметров (числа оборотов барабана, угла наклона аппарата, расхода, температуры и влагосодержания воздуха и материала на входе в сушилку). При определении динамических свойств данного аппарата считаем его конструктивные характеристики неизменными. Таким образом, в качестве возмущающих воздействий принимаем изменения расхода, температуры и влагосодержания материала и воздуха на входе в сушилку.

При составлении математической модели барабанной сушилки сделаем следующие допущения:

- 1. Теплоемкости материала, влаги (воды) и барабана и коэффициенты теплоотдачи от воздуха к материалу и барабану постоянны по длине и в поперечном сечении сушилки, а также во времени;
- 2. Температура и влагосодержание материала распределены по всей длине аппарата и сосредоточены в его поперечном сечении (одномерная задача), так как при вращении барабана материал хорошо смешивается;
- 3. Поперечное сечение слоя материала, находящегося на лопастях барабана, значительно меньше его длины, а скорость воздуха

намного больше скорости перемещения материала вдоль сушилки. Температура и влагосодержание воздуха одинаковы по длине и в поперечном сечении слоя материала и равны температуре и влагосодержанию на выходе;

- 4. Передачей тепла материалу при соприкосновении его с лопастями барабана пренебрегаем;
- 5. Температура барабана в статике равна температуре воздуха на выходе из сушилки;
- 6. Передачей тепла от воздуха к материалу путем лучеиспускания пренебрегаем;
- 7. Движение материала по сечению аппарата происходит равномерно, без турбулентного смещения.

При составлении уравнений сохранения энергии для воздуха и материала учитываем лишь тепло, затраченное на нагрев «сухого» материала, поскольку тепло, переданное воздухом материалу и затраченное на испарение влаги из него, возвращается обратно в воздух вместе с испаренной влагой.

Для разработки математической модели процесса сушки с учетом распределенности параметров, а также с учетом приведенных выше допущений были составлены следующие дифференциальные уравнения: сохранения энергии для воздуха, сохранения массы для влаги в воздухе, сохранения энергии для материала, сохранения массы для влаги в материале, сохранения энергии для сушильного барабана.

На основании данных уравнений получена система нелинейных дифференциальных уравнений в частных производных. Проведена линеаризация данной системы уравнений и получена математическая модель процесса сушки по основным динамическим каналам.

Кондрукевич В.Ю., Жур А.А., ст. преподаватель Белорусский государственный аграрный технический университет, Минск, Республика Беларусь АВТОМАТИЗИРОВАННАЯ СИСТЕМА ЖИДКОГО КОРМЛЕНИЯ СВИНЕЙ

Система жидкого кормления является передовой технологией в области свиноводства. Жидкое кормление имеет ряд преимуществ по сравнению с системой сухого кормления.