ОБОСНОВАНИЕ ОСНОВНЫХ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ наплавки плоских леталей намораживанием из расплава

При нарашивании деталей наплавкой намораживанием, наряду с обеспечением прочного соединения наплавленного металла с основой, требуется получить истаплопокрытия необходимой толщины с высокими физико-механическими свойствами.

На основании экспериментального исследования и теоретического анализа установлено, что этот процесс управляем. Для условий наплавки плоской подложки (толщина 2X), исходя из двустацийного ее прогрева, выявлено, что опытиме значения толщины слоя затвердевшего сплава (1), соответствующие определенному времени (\mathcal{T}_7) первой стадии прогрева подложки в расплаве, аппроксимируются зависимостью

$$\xi_{I=1.128\sqrt{t_I}} = \frac{B_z(T_1 con - T_2) - B_1(T_1 - T_1 con)}{\ell_1 \cdot \rho_1}$$

где b_4 , b_2 - коэффициенты аккумуляции теле соответственно материала расплава подложки;

Та , 72 - начальная температура соответственно респлава и подложки;

ИСОЛ - температура солидува сплава;

 \mathcal{P}_{i} — удельная теплота иристаллизации сплана; \mathcal{P}_{i} — плотность сплана в твердом состоянии.

Толщина слоя затвердениего сплава (\$11), соответствуюизя определенному времени ($\mathcal{T}_{I\!\!I}$) второй стадии прогреме подложим в расплава, аппрокомизруется формулой

- удельная теплоемкость материала подложки; PAG - плотность катериала подложки;

- коэффициент температуропроводности натериала подложки:

Foil - критерий Фурье. Виполнение исследования поэволяют сделать вывод, что основными технологическими управляемыми параметрами неплавки намораживанием из расплава являются начальная температура подложки и расплава и продолжительность контактирования подложки с расплавом. Наряду с этим следует отметить, что при ваплавие могут элиять: материал и конструкция тигля, скорость погружения подложки в расплав, способы флюсования наплавляемой поверхности и защиты расплава от окисления.

УДК 631.3

В.П. Суслов

пути развития ремонтного производства сельскохозийственной техники

Сесльнохозяйственное производство СССР развивается в соответствии с аграрной политикой Коммунистической партии. Советское правительство проявляет постоянную заботу о непрерывном росте и соверженствовании материально-технической бази сельского хозяйства, об увеличении количества и повышении качества поставляемой промишленностью техники, укреплении и развитии ремонтного производства, нак основы восстановления годности и работоспособности машин. Растут поставки энергованиянной, высокопроизводительной и конструктивно-сложной машиной техники (тракторов К-700, Т-150, МТЗ-80, верноуборочных комбайнов "Имва", "Колос", "Сибиряк", большегрузных автомобилей МАВ, КАМАВ, КРАЗ и пр.). Для поддержения этого машиностракторного парка укрепляется рамонтная база в колхозах, совхозах и организациях Государственного Комитета по производственно-техническому обеспечению сельского хозяйства.

Развитие ремонтной базы должно проходить в соответствии с прогрессивными и экономически обоснованными методами технического обслуживания и ремонта МТП.

Организационные формы ремонтного обслуживания зависят от многих факторов. Учитывая агрозональные условия, развитость автодорожной сеги, относительно развимерную плотность МТП и ремонтных работ в Белорусской ССР научно обосновано развитие ремонтной базы по следующим направлениям: