Полученная подстилка по органолептическим показателям — это бурое вещество, рассыпчатое, хорошо впитывающее воду и не прилипающее к рукам, с запахом земли. Во время использования подстилка стирается и растворяется в жидких стоках, а, следовательно, не накапливается.

Список использованной литературы

- 1. Кольга Д. Ф. Переработка навоза в экологически безопасные органические удобрения /Д. Ф. Кольга, А. С. Васько. Минск: БГАТУ, 2017. 128 с.
- 2. Казакевич, П. П. Технологическая концепция «умной» молочной фермы : монография / П. П. Казакевич, В. Н. Тимошенко, А. А. Музыка ; отв. ред. М. В. Джумкова ; Национальная академия наук Беларуси, РУП «Научно-практический центр НАН Беларуси по животноводству». Жодино : Научно-практический центр Национальной академии наук Беларуси по животноводству, 2021. 244 с.

УДК 621.316.722

О.В. Бондарчук, канд. техн. наук,

Е.А. Дерушко, А.В. Брилевский, Д.В. Крокан,

Учреждение образования «Белорусский государственный аграрный технический университет», г. Минск

РАЗРАБОТКА СИСТЕМЫ АВР ДЛЯ ЭЛЕКТРОПРИЕМНИКОВ І КАТЕГОРИИ НА ОБЪЕКТАХ ІІ КАТЕГОРИИ НАДЕЖНОСТИ ЭЛЕКТРОСНАБЖЕНИЯ

Ключевые слова: категория надежности электроснабжения, ДГУ, электроприемник, агропромышленный комплекс.

Key words: category of power supply reliability, DGS, electric customer, agro-industrial complex.

Аннотация. Представлены разработанные схемы автоматического ввода резерва (ABP) и запуска дизель-генераторной установки (ДГУ) для электроснабжения потребителей I категории надежности на объектах II категории.

Abstract. The developed schemes of automatic standby input (ASI) and start-up of diesel-generator set (DGS) for power supply of consumers of I category of reliability on objects of II category are presented.

Бесперебойное, надежное и качественное электроснабжение является одной из основ безопасности предприятий и непрерывности технологических процессов.

Сельскохозяйственные объекты, такие как птичник до 100 тыс. кур несушек, согласно [1] относят к потребителям второй категории по надежности электроснабжения. Но на самом объекте имеются электроприемники первой категории, например, система вентиляции. Следовательно, необходимо обеспечить ее бесперебойную работу. Для этих целей устанавливают дизель-генераторную установку (ДГУ), которая запитает вентиляционную систему в случае аварии на вводной линии. Включение дизель-генераторной установки происходит автоматически после исчезновения питания от основного источника электроснабжения.

В данной статье представлена разработанная схема автоматического переключения питания от сети к ДГУ (рисунок 1) и схема автоматического запуска ДГУ (рисунок 2). Использование на практике данных схем позволит обеспечить электроэнергией потребителей I категории надежности электроснабжения до переключения секционного рубильника обслуживающим персоналом. Известно, что время от аварии до переключения линии может составить от нескольких минут до десятков минут, а иногда и часов [2]. За это время может произойти массовый падеж птицы и т.п.

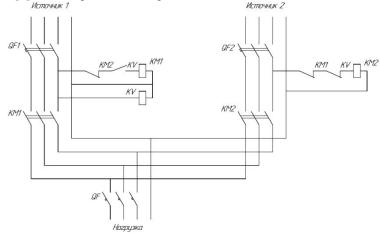


Рисунок 1. Схема автоматического переключения питания от сети к ДГУ

Также ABP сработает и при снижении напряжения ниже нормируемой величины, когда падение напряжения столь велико, что электроприемники будут работать с большими перегрузками, а электродвигатели остановятся. Эту защиту обеспечивает реле контроля фаз KV. При малом напряжении катушка реле не запитывается и происходит размыкание контактов контактора КМ1 на главной питающей линии (источник 1) и замыкание контактов КМ2 на резервной (источник 2).

С целью усовершенствования схемы с учетом автоматического запуска дизель-генераторной установки от аккумуляторной батареи при бесперебойной работе сети компьютеров и датчиков (для контроля параметров технологического процесса), необходимо применение в схеме контроллера и инвертора, работающего от секции аккумуляторных батарей. Инвертор преобразует постоянное пониженное напряжение в переменное напряжение 220 В. В случае, если основное питание не восстанавливается в течение некоторого заданного времени, то контроллер подает сигнал для автозапуска генератора (рисунок 2).

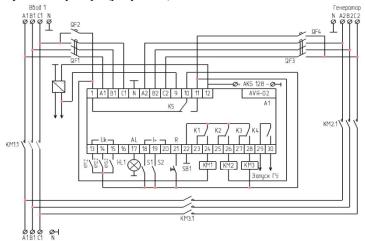


Рисунок 2. Схема автоматического запуска ДГУ

При восстановлении параметров напряжения в главной цепи происходит замыкание контактов контактора данной цепи с одновременным размыканием контактора контактора резервной. В схеме имеется блокировка одновременного срабатывания катушек во избежание встречного питания.

Как только на контакторы поступает напряжение от главной питающей линии, система автоматического запуска генератора срабатывает в обратном порядке. Идет сигнал на заслонку топливного шланга, которая блокирует подачу топлива и двигатель ДГУ останавливается.

В данной схеме представлен полный автоматический запуск генератора, что исключает необходимость присутствия оператора для пуска ДГУ. Вся система ввода резерва защищена от встречных токов и коротко-

го замыкания. Устанавливать АВР необходимо после прибора учета, чтобы не оплачивать выработанную на предприятии электроэнергию. АВР можно размещать как в распределительных, так и во вводных шкафах.

Список использованной литературы

- 1. Сети электрические распределительные сельские напряжением $0.38-10~\mathrm{kB}$: ТКП $385-2022-\mathrm{B}$ замен. ТКП $385-2012~(02230)-\mathrm{M}$ инск : Минэнерго, $2022.-65~\mathrm{c}$.
- 2. Орлов, Д. А. Автоматический ввод резерва. Принцип работы ABP / Д. А. Орлов // Развитие инструментов управления научной деятельностью : сборник статей международной научно-практической конференции: в 4 частях, Уфа, 18 мая 2017 года. Том Часть 2. Уфа: Общество с ограниченной ответственностью "ОМЕГА САЙНС", 2017. С. 100-102.

УДК 378. 663. 09

А.А. Нехайчик, ст. преподаватель, **Е.С. Чикита,** студент, Учреждение образования «Белорусский государственный аграрный технический университет», г. Минск

ИСПОЛЬЗОВАНИЕ ПРАКТИКО-ОРИЕНТИРОВАННОГО ПОДХОДА ПРИ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ «ХИМИЯ»

Ключевые слова: практико-ориентированный подход, решение запач.

Key words: practice-oriented approach, problem solving.

Аннотация. рассмотрен разноуровневый подход к решению задач. **Symmary:** a multi-level approach to solving problems is considered.

Наиболее широкий подход, связанный с практико-ориентированным образованием, направлен на приобретение кроме знаний, умений, навыков – опыта практической деятельности с целью достижения профессионально и социально значимых компетеностей. Это обеспечивает вовлечение студентов в работу и их активность, сравнимую с активностью преподавателя.

Изучение курса химии обязательно сопровождается выполнением упражнений и решением задач. Решение задач — один из лучших методов прочного усвоения, проверки и закрепления теоретического материала [1]. Поиск ответов на возникшие и сформулированные вопросы способствует формированию навыков самостоятельного поиска нужной информации и