УДК 631.3

ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ ТРАКТОРОВ В ЗИМНИЙ ПЕРИОД

А.П. Ляхов, к.т.н., доцент, В.Н. Кецко, ст. преподаватель

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Ввеление

Эксплуатация тракторов в зимний период имеет ряд особенностей. От своевременного и качественного проведения сезонного осенне-зимнего технического обслуживания зависит надежная и долговечная работа различных узлов, механизмов и систем трактора, что позволит повысить выработку сельскохозяйственных агрегатов.

Основная часть

Основными факторами, определяющими особенности эксплуатации тракторов в зимний период, является отрицательная температура окружающего воздуха и наличие снежного покрова, ухудшающего проходимость МТА, возможность потери управляемости и заносов в гололедный период.

Подготовку машин к зимней эксплуатации проводят при выполнении сезонного технического обслуживания СО-ОЗ.

Средствами, обеспечивающими работоспособность тракторов в зимних условиях, являются:

- эксплуатационные материалы (топливо, моторные, трансмиссионные и гидравлические масла, пластичные смазочные материалы и специальные жидкости);
- средства обеспечения пуска машин (обеспечение пуска дизелей, подготовка к работе трансмиссий, отопление кабин).

Средствами, обеспечивающими пуск дизельного двигателя, в зимний период, являются:

- средства подогрева воздуха на впуске (свечи подогрева впускного воздуха, электрофональные подогреватели);
 - средства колоризаторного воспламенения топлива (свечи накаливания);
- приспособления для впрыскивания легковоспламеняющихся пусковых жидкостей;
- средства улучшения пусковых качеств дизеля (декомпрессионный механизм; устройства, позволяющие изменять степень сжатия, фазы газораспределения и угол опережения подачи топлива при пуске);

- пусковые устройства повышенной мощности (пусковые двигатели, молекулярные накопители энергии, электростартеры повышенной мощности и внешние источники электрической энергии).

Некоторые факторы влияния зимней эксплуатации на техническое состояние машин проявляется в следующем.

Затруднения при пуске дизелей машин возникают из-за сложности создания пусковой частоты вращения коленчатого вала, а также из-за ухудшения условий смесеобразования и самовоспламенения смеси дизельного топлива с воздухом, основной причиной этого является плохая испаряемость дизельного топлива, в особенности его тяжелых фракций. Пониженный тепловой режим работающего дизеля является причиной интенсивного образования смолистых и других отложений на деталях цилиндропоршневой группы, что также отрицательно сказывается на его надежности.

Низкая температура окружающего воздуха является определяющим фактором, оказывающим влияние на качество функционирования и надежность гидропривода машин. Прежде всего это выражается в увеличении вязкости рабочей жидкости, что приводит к росту внутренних гидравлических сопротивлений и снижению КПД гидропривода. При определенном значении вязкости рабочей жидкости работа гидропривода становиться невозможной.

Низкие температуры окружающего воздуха влияют на надежность резиновых деталей, обеспечивающих герметизацию узлов гидропривода и прежде всего гидроцилиндров. Причины отказа уплотнителей заключается в снижении эластичности материала, в его усадке, связанной с высоким значением коэффициента линейного расширения эластомеров, а также в разрушающем воздействии наледи, образующейся на штоках гидроцилиндров.

Повышенная вязкость трансмиссионных масел приводит к увеличению до 50% мощности на преодоление внутренних сопротивлений в силовых передачах.

Накопление и замерзание конденсата воды в гидравлических и пневматических системах приводит к засорению фильтроэлементов кристаллами льда, заклиниванию аппаратуры управления, а в отдельных случаях к полному перекрытию льдом клапанов и трубопроводов.

Увеличенная продолжительность работы дизеля в режиме холостого хода и пуск холодного дизеля приводит к ухудшению процессов сгорания топлива.

При подготовке машин к зимней эксплуатации систему охлаждения заполняют специальными низкозамерзающими жидкостями – антифризами на основе этиленгликоля. Использование в качестве охлаждающей жидкости дизельного топлива и маловязких масел не допускается, так как создается повышенная пожароопасность и преждевременный выход из строя резиновых деталей системы охлаждения. Необходимо осуществлять

Секция 2: Техническое обеспечение перспективных технологий производства сельскохозяйственной продукции

проверку исправности всех элементов системы охлаждения: термостата, ременной передачи, привода вентилятора, термометра и др. Особое внимание следует уделить проверке герметичности системы охлаждения, так как утечка охлаждающей жидкости влияет не только на тепловой режим двигателя и приводит к потере антифриза, но и при попадании его в моторное масло резко увеличивает интенсивность износа дизеля.

Основными подготовительными мероприятиями по системе смазки дизельного двигателя являются промывка системы, замена летнего моторного масла на зимнее и проверка исправности элементов.

Подготовка системы питания дизеля проводится с целью предотвращения образования ледяных пробок, перекрывающих подачу топлива, перевода топливной системы летних сортов топлива на зимнее, настройки топливной системы на увеличенную подачу топлива, подключение приспособлений, обеспечивающих обогрев воздуха и топлива, а также устройство термоизоляции и обогрева топливного бака и топливопроводов.

Настройка топливной системы на увеличенную подачу топлива требует соответствующей регулировки топливного насоса высокого давления, с одновременной проверкой работы подкачивающего насоса и форсунок.

При низких температурах окружающего воздуха следует утеплить топливный бак, насос, фильтры, трубопроводы, а при необходимости осуществить их непрерывный обогрев с помощью отработавших газов или жидкости из системы охлаждения работающего дизеля.

При подготовке электрооборудования, проверяется исправность электропроводки, контрольно-измерительных приборов, технического состояния аккумуляторных батарей (плотность электролита).

Подготовка гидравлической системы осуществляется с целью обеспечения вязкости рабочей жидкости не выше допустимой в период начала работы, обеспечение требуемой вязкости во время работы и сокращения времени прогрева рабочей жидкости до рабочей температуры.

Подготовка пневмосистем ставит целью предотвращение замерзания конденсата влаги и обеспечение герметичности системы. При этом следует проверить техническое состояние масловлагоотделителя, обеспечивающего сушку воздуха, сбор конденсата и снижение температуры его застывания.

Подготовка пневмоколесной ходовой системы выполняется с целью исключения опасности повреждения шин, связанных с потерей эластичности; улучшения проходимости машин по снежному покрову и обледенелым дорогам; обеспечение устойчивости прямолинейного движения без уводов и заносов. Это достигается одинаковым износом протектора и ровным давлением воздуха в шинах обеих сторон трактора.

Заключение

Эффективная и надежная эксплуатация тракторов в условиях отрицательных температур требует выполнения в полном объеме и качественно всех операций осенне-зимнего сезонного обслуживания в соответствии с рекомендациями заводов-изготовителей тракторов и требованиями стандартов на применяемые жидкости и масла, применения систем и устройств, обеспечивающих надежный запуск и работу дизеля, системы питания, охлаждения, трансмиссии, гидросистемы, отопления кабины.

Литература

- 1. Власов П.А. Особенности эксплуатации дизельной топливной аппаратуры. М.: Агропромиздат, 1986, 126 с.
- 2. Костин А.К., Пугачев Б.П., Кочинев Ю.Ю. Работа дизелей в условиях эксплуатации. Л.: Машиностроение, 1989, 284 с.

УДК631.363

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОСНОВНЫХ РЕЖИМНЫХ ФАКТОРОВ ВАЛЬЦОВОГО ИЗМЕЛЬЧИТЕЛЯ НА УДЕЛЬНЫЕ ЗАТРАТЫ ЭНЕРГИИ ИЗМЕЛЬЧЕНИЯ ОЗИМОЙ РЖИ

И.Н. Шило, д.т.н., профессор, В.Н. Савиных, к.т.н., Н.А. Воробьёв, к.т.н., доцент, А.В. Гуд, ассистент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Введение

Эффективность процесса измельчения зерна обычно характеризуется затратами энергии отнесенными к количеству измельченного материала (кВт-ч/т) или вновь образованной поверхности (Вт-ч/мм²), степенью измельчения частиц и гранулометрическим составом. Целью работы является исследовать влияние основных режимных факторов вальцового измельчителя на затраты энергии отнесенные на вновь образованную поверхность измельченных частиц.

Основная часть

Исследования проводились на экспериментальном вальцовом измельчителе на вальцах с шагом рифлей 3,5 мм, углом острия 30° на зерне озимой ржи влажностью 13,6% при изменении зазора от 0,2 до 0,8 мм, окружной скорости быстро вращающегося вальца от 9,1 до 19,1 м/с и отношении окружных скоростей вальцов от 1,4 до 2,6.