Список использованной литературы

- 1. Бакач, Н. Урожай без камней / Н. Бакач, А. Басаревский, С. Кострома //
 - 2. Белорусское сельское хозяйство. 2013. №4 (132). С. 110–113.
- 3. Патент РБ на изобретение 13975 С1, МПК А 01В 43/00, // Бюл. № 1. 2011.

УДК 637.356.47.07

ПОВЫШЕНИЕ КАЧЕСТВА РАБОТЫ ПОДКАПЫВАЮЩЕЙ ЧАСТИ КАРТОФЕЛЕУБОРОЧНЫХ МАШИН

Г.А. Радишевский, к.т.н., доцент; Н.П. Гурнович, к.т.н., доцент, Г.Н. Портянко, к.т.н., доцент, С.Р. Белый старший преподаватель, Е.Ю. Журавский, студент, Н.О. Петроченко, студент,

А.С. Мезга студент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Введение

В настоящее время одним из актуальных вопросов при уборке картофеля, является повышение эффективности (качества) работы уборочных машин и в частности приемных частей. В технологической схеме работы картофелеуборочных машин приемная часть является основным фактором, определяющим выполнение технологического процесса подкапывания. Процесс подкапывания клубней, форма и параметры подкапывающих рабочих органов обуславливаются специфической особенностью возделывания картофеля.

Основная часть

Применяемые в настоящее время, приемные части картофелеуборочных машин, состоят из плоского лемеха и пассивных или активных боковин, которые не обеспечивают транспортирование подкопанного пласта на сепарирующие органы при скоростях более 1 м/с.

Однако, повышение эффективности процесса подкапывания сдерживает несовершенство подкапывающих рабочих органов, заключающее в том, что на рыхлых, несвязанных, засоренных растительными остатками почвах приемные части машин быстро заби-

ваюся: ботва и сорняки обвалакивают боковины, что способствует сгруживанию её на лемехе и это проводит к нарушению технологического процесса подкапывания картофельной грядки картофелеуборочной машиной и к значительным потерям клубней. Только из-за нарушений технологического процесса, выразившегося в забивании приемной части картофелеуборочной машины, наблюдается до 15,6...23,1 % простоев, что ведет к снижению производительности на 18,5...28,8 % [1]. Кроме того, сгруживание массы перед лемехом приводит неравномерной её подачи на сепарирующие органы, в результате чего качество работы сепарирующих и ботвоудаляющих рабочих органов ухудшается: снижается чистота картофеля на выходе из картофелеуборочной машины и увеличиваются потери клубней с ботвой.

Испытания комбайнов показали, что максимальные рабочие скорости движения составили для КСК—4 (легкие почвы) — 1,84 м/с (5,97 км/ч); ККУ—2 - 0,88 м/с (3,2 ким/ч) и КПК—2—01 — 1,02 м/с (3,7 км/ч) и ограничились не их возможностями по сепарации почвы, а затруднениями в заборе несвязанного пласта приемной частью комбайна [2]. Это свидетельствует о том, что наиболее узким местом в картофелеуборочных машинах являются подкапывающие органы и в частности пассивные боковины, способствующие сгруживанию подкапываемого пласта на лемехе (рисунок 1).

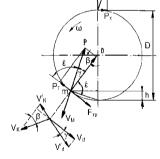


Рисунок 1

Рисунок 2

С целью устранения обвалакивания пассивных боковин растительными остатками целесообразно использовать дисковые расположенные под некоторым углом к горизонту и направлению движения таким образом, чтобы обеспечить боковое воздействие на подкапываемый пласт с целью нарушения внутренних связей, что будет способствовать повышению сепарации почвы на элеваторе.

Интенсифицировать процесс сдвига подкатываемого пласта в поперечном направлении следует за счет придания дискам выпуклой тарельчатой формы, установленных выпуклой стороной к сдвигаемому пласту.

Работа дисковых делителей складывается из двух фаз: подрезание почвенного пласта по сторонам подкапывающих лемехов на глубину h, защемление пласта между рабочими поверхностями и транспортирование его на сепарирующий элеватор.

Рассмотрим процесс резания почвенного пласта и определим силы, действующие на диск. Дисковый делитель испытывает действие силы сопротивления почвы лезвию диска R и силы трения лезвия диска о почву F_{TD} (рисунок 2).

Условие перезания растительных остатков

$$F_{\rm TP} > P_{\rm T},$$
 (1)

где $F_{\rm TP} = R \cdot \sin \varepsilon \cdot \text{tg} \varphi - \text{сила трения};$

 $P_{\tau} = R \cdot \cos \varepsilon -$ сила движущая.

Условие 1 выполняется при

$$\varepsilon_{\mathsf{T}} > 90^{\mathsf{0}} - \varphi$$
 ,

 $arepsilon_{
m T} > 90^{
m 0} - arphi$, где arphi – угол трения почвы о диск ($arphi = 26...30^{
m 0}$ [3])

Следовательно $\varepsilon_{\rm T} > 90^{\circ} - \varphi = 64 ... 60^{\circ}$.

При ходе диска на глубину залегания клубней (h = 0.2 м) с учетом профиля подкапываемой грядки [3] и диаметра диска (D = 0,65 м), угол установки дисковой боковины должен быть

$$\varepsilon_{\mathbf{p}} = \arg t g \left(\sqrt{\frac{D}{h_{\mathbf{H}}}} - \mathbf{1} \right) \ge 59^{\circ}.$$

Условие транспортирования пласта обеспечивается при установке дискового делителя к направлению движение картофелеуборочной машины

$$\dot{\epsilon}_{\rm r} > \dot{\epsilon}_{\rm p} (64...60^{\circ} > 59^{\circ}).$$

Или, когда абсолютная скорость точки т без учета скорости погружения диска в почву $V_{\rm m}$

$$\overline{V_a} \geq \overline{V_a} - \frac{\overline{V_k}}{\Box},$$
 или $V_a = \frac{1}{\cos v} \left(V_d - V_K sin\beta \right),$

где V_{κ} – максимальная поступательная скорость агрегата.

Заключение

В результате проведенных лабораторно-полевых исследований комбайна с лемешно-дисковой в сравнении с серийной приемной частью установлено: при скоростях V=2,7...4,2 км/ч сгруживание подкапываемой почвы и забивание лемешно-дисковых подкапывающих органов растительными остатками не наблюдалось [4].

Список использованной литературы

- 1. Протокол 7-132-86 (14132510) государственных приемочных испытаний картофелеуборочного комбайна КПК-3. (Белорусская МИС) п. Привольный, 1996. 122 с.
- 2. Протокол 7-47-88 государственных приемочных испытаний картофелеуборочного комбайна ККУ-2. (Белорусская МИС) п. Привольный, 1986. 62 с.
- 3. Петров Γ .Д. Картофелеуборочные машины / М.: Машиностроение, 1984. 254 с.
- 4. Протокол № 7-51-85 предварительных испытаний самоходного четырехрядного картофелеуборочного комбайна с модернизированной приемной частью КСК-4-1А (Белорусская МИС) п. Привольный, 1985. 29 с.

УДК 631.356.46

АНАЛИЗ ЭФФЕКТИВНОСТИ РАБОТЫ ПОДКАПЫВАЮЩИХ РАБОЧИХ ОРГАНОВ КАРТОФЕЛЕУБОРОЧНЫХ МАШИН

С.И. Оскирко, к.т.н., доцент, М.Н. Трибуналов, к.т.н., доцент, Ю.А. Напорко, ст. преподаватель

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Ввеление

Многочисленные наблюдения за работой отечественных и зарубежных картофелеуборочных машин в различных почвенноклиматических условиях показывают, что неудовлетворительная работа подкапывающих органов может привести к нарушениям технологии работы машины, при которых не обеспечиваются аг-