высокий антимикробный эффект по отношению к грамположительным бактериям Staphylococcus aureus. Здесь факторы редукции также RF>5 с белковой нагрузкой и без нее, что соответствует СанПиН 21-112-99г.

Электрохимическая активация воды является динамично развивающимся направлением обеззараживания промышленных стоков. Принцип электрохимической активации воды используется для получения активированных фракций воды: дезинфицирующих, стерилизующих и моющих. Полученные растворы применяются в медицине, сельскохозяйственном, промышленном производстве, ветеринарии и других отраслях народного хозяйства.

Список использованной литературы

- 1. Никифоров, Л.Л. Научно-практические основы совершенствования процесса и аппаратурного оформления очистки сточных вод мясоперерабатывающих предприятий. М., 2008. 45с.
- 2. Колесников, В.А. Меньшутина, Н.В. Анализ, проектирование технологий и оборудования для очистки сточных вод. М.: ДеЛи принт, 2005. 266 с.

УДК 637.116

УСОВЕРШЕНСТВОВАННЫЙ ВАКУУМНЫЙ НАСОС ДОИЛЬНОЙ УСТАНОВКИ

В.В. Захаров, ст. преподаватель, Д.К. Тагаев, студент УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Ввеление

В настоящее время известна наиболее распространенная конструкция пластинчато-роторного вакуумного насоса марки НВУ, ДВН, состоящая из корпуса, всасывающего и выпускного патрубков, боковых крышек, ротора и радиально расположенных одинарных лопаток (рисунок 1). Ключевым вопросом остается совершенствование конструкции и технических параметров пластинчатороторного вакуумного насоса. Недостатком насоса ДВН-1 в составе

вакуумной станции является повышенная удельная энергоемкость процесса доения, а так же несовершенство конструкции и низкий КПД насоса.[1]

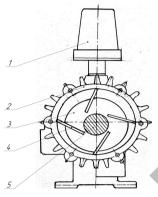


Рисунок 1 - Насос ДВН-1 1 – масленка; 2 – корпус; 3 – ротор; 4 – лопатка; 5 - вал

Основная часть

Для устранения данных недостатков насоса нами была изменена конструкция ротора ротационного вакуумного насоса (рисунок 2).

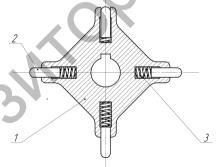


Рисунок 2 - Модернизированный ротор в сборе вакуумного насоса ДВН-1

Предлагаемый пластинчато-роторный вакуумный насос включает корпус, всасывающий и выпускной патрубки, запрессованную в корпус гильзу с внутренней термически обработанной и зеркально полированной поверхностью, переднюю и заднюю крышки с пластинами из того же материала, что и гильза. Внутри корпуса экс-

центрично его оси установлен ротор 1 (рисунок 2) с четырьмя пазами расположенными радиально по отношению центра ротора. В пазы вставлены лопатки которые снизу подпираются 12-ю пружинами по 3 на каждую лопатку вставленными в высверленные отверстия в пазах лопаток. Лопатки изготовлены из графита и связующего клеевого состава. При использовании таких лопаток не происходит деструкции и изменения свойств материала при нагреве рабочей зоны лопатки связанной с трением. Графитовые лопатки могут работать в диапазоне температуры до 200°С. Мельчайшие частицы графита образуют смазывающий слой в зазоре между лопатками и камерой насоса и поддерживают его за счёт минимального износа самих лопаток. По причине сниженного трения графитовые лопатки обеспечивают более низкий уровень шума при работе насоса.[2]

Заключение

Данная модернизация существующей модели вакуумного насоса привела:

- к увеличению на 20% суммарного объема рабочих камер, следствие увеличение заполнения камер переносимым воздухом.
- добавление 12 пружин в высверленные пазы ротора насоса улучшили динамику работы вылета рабочих лопаток из пазов ротора насоса, предотвращая при этом их заклинивание. Радиальные перетечеки воздуха между камерами, через верхние кромки рабочих пластин и внутренней поверхностью статора насоса, снизились.

Все это позволило увеличить, производительность вакуумного насоса до 30%, а запрессовка в корпус насоса гильзы из высокопрочного чугуна и использование рабочих графитовых лопаток: улучшила надежность вакуумной установки и увеличила ресурс насоса.

Список использованной литературы

- 1. Дашков В.Н., Антошук С.А., Захаров В.В. / Обоснование выбора расположения ротора в корпусе пластинчатого вакуумного насоса / Вестник Курской государственной сельскохозяйственной академии. 2017. № 6. С.30-35
- 2. Казаровец И.В. Технологии, оборудование и технический сервис в молочном животноводстве: Монография / Н.В. Казаровец, В.П. Миклуш, М.В. Колончук.- Минск: БГАТУ,2007.- 556 с.

3.Мжельский, Н.И. Вакуумные насосы для доильных установок./М.: Машиностроение. 1974г. - 151с .

УДК 637.116

ВЫБОР ОПТИМАЛЬНОЙ КОНСТРУКЦИИ ПОДВЕСНОЙ ЧАСТИ ДОИЛЬНОГО АППАРАТА ДЛЯ ДОЕНИЯ ВЫСОКОПРОДУКТИВНЫХ КОРОВ

В.В. Захаров, ст. преподаватель, П.С. Шайтанов, студент, С.А. Костюкевич, к.с.-х.н., доцент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Введение

По состоянию на 01.01.2018 года Республика Беларусь произвела 7322 тыс. тонн молока. Поголовье коров молочного стада составляет 1426 тыс.

Возросшая молокоотдача от одной коровы уже приблизилась к рубежу в 5000 килограмм за год. Из всех областей республики в пяти районах достигли среднего уровня в 7000 килограмм молока за лактацию, что свидетельствует о повышении молочной продуктивности дойного стада Республики Беларусь [1]. В связи с этим на молочно товарных фермах республики возникла проблема с отечественными доильными залами в которых используются несовершенные доильные аппараты.

Основная часть

Одним из основных элементов автоматизированных доильных установок является доильный аппарат. В его состав входит подвесная часть (четыре доильных стакана плюс коллектор) являющихся исполнительным механизмом, пульсатор, молочно-вакуумные шланги.

Недостатком конструкции отечественного коллектора объемом $300\,cm^3$ является перекрестное попадание молока обратно в сосок вымени из-за нестабильности вакуумного режима, несоответствия молокоотдачи каждой четвертью вымени, образования схлопывающихся пузырьков препятствующих своевременному оттоку молока из кол-