м; t – температура ПЭН, °C; ρ_{II} - удельное поверхностное сопротивление РТП, ом/квадрат; J – поверхностная плотность тока A/м; E – напряженность электрического поля, B/м; q_F - плотность теплового потока РТП ПЭН, Вт/м²; P – периметр проточного ПЭН, м; G – массовый расход среды, кг/с; w – скорость движения обрабатываемой среды, м/с; g – ускорение свободного падения, м/с²; ϕ_{II} - коэффициент взаимооблучения пластин; ρ_0 , ρ_C - плотность обрабатываемой среды при температуре t₀ и t_c соответственно, кг/м³; H – высота пластин проточного аппарата, м; β - температурный коэффициент объемного расширения; °C -¹; р_Д – потери давления на преодоление сопротивлений движению жидкости в проточном ПЭН:

$$p_{\mathcal{A}} = \frac{\xi_{\mathcal{IP}} + \xi_{\mathcal{M}}}{2} \rho_{\mathcal{C}} w^2$$
, H / M^2 ; $\xi_{\mathcal{IP}} = 48 \cdot H / (\text{Re}_B \cdot B)$ - коэффициент

потери напора на трение по длине нагревателя; ξ_M - коэффициент местных сопротивлений в проточном ПЭН; В — ширина канала проточного ПЭН, м; c_C — теплоемкость обрабатываемой среды Дж/(кг °C); х — текущая координата нагревателя, м; Re, Gr, Pr - критерий Рейнольдса, Грасгофа, Прандтля.

Краевые условия для системы уравнений проточного ПЭН при свободной конвекции (1) – (9) следующие:

При x=0 $t(0,\tau)=t_0$;

$$\lambda_{\mathcal{I}} \frac{\partial t(0,\tau)}{\partial x} = \alpha_1 \cdot [t_1(0,\tau) - t_0] + \alpha_{C1} \cdot [t_1(0,\tau) - t_0]; \tag{10}$$

$$t_C(0,\tau) = t_0; \quad \rho_C(0,\tau) = \rho_0;$$
 (11)

x=H

$$-\lambda_{3} \frac{dt(H,\tau)}{dx} = \alpha_{H} \cdot [t_{H}(0,\tau) - t_{0}] + \alpha_{CH} \cdot [t_{H}(0,\tau) - t_{CH}]; \tag{12}$$

 $при \tau = 0$

$$t(x,0) = t_0; t_C(x,0) = t_0; w(x,0) = 0; \rho_C(x,0) = \rho_0.$$
 (13)

Решение системы интегро-дифференциальных уравнений проводилось методом конечных разностей, при этом аппроксимация исходных уравнений имела неявную конечно-разностную схему.

Математическая система МАТLAВ

Киселев Б. М., канд. техн. наук, доцент, Севернева Е. В., Жалобкевич Н. М., БГАТУ, г. Минск

Использование вычислительной техники при решении научнотехнических задач идет по многим направлениям: от использования универсальных языков программирования до специализированных программных продуктов для решения наиболее распространенных в той или иной области задач.

В последние годы особый интерес представляет компьютерная математика. Под этим термином понимается "совокупность методов и средств, обеспечивающих максимально комфортную и быструю подготовку алгоритмов и программ для решения математических задач любой сложности ... с высокой степенью визуализации всех этапов решения". При этом в подавляющем большинстве случаев предусматривается объединение возможностей текстовых редакторов (в формате Word, например) с собственно математическими системами. Это позволяет создавать электронные документы и книги с "живыми" примерами математических расчетов и высокой степенью графической визуализации всех этапов решения задачи,

Программные средства компьютерной математики реализованы в виде компьютерных математических систем. Существует большое число таких систем, среди которых особое место занимает система MATLAB (MATrix LABoratory - матричная лаборатория), как по степени универсальности, так и по сложности (и стоимости).

По обилию функций и скорости вычислений MATLAB превосходит большинство подобных систем, включая Mathcad. MATLAB является бесспорным лидером в области численных расчетов и моделирования различных систем и устройств.

Система MATLAB – это и операционная среда и язык программирования, на котором могут быть написаны программы для многократного использования. На этом языке уже написано множество программ для решения самых разнообразных задач во многих областях науки и техники. Коллекции родственных программ, предназначенных для решения задач (или проблем) из той или иной области науки (или техники), объединяются в специальную папку, которую называют пакетом прикладных программ (ППП). Уже сейчас существует большое число ППП, которое непрерывно пополняется. Непрерывно расширяется и содержание каждого отдельного ППП. Насчитывается около 40 ППП (МАТLAB Application Toolboxes). В их числе:

пакет SIMULINK – предназначен для математического моделирования динамических систем, представленных своей функциональной блоксхемой;

пакет Power System Blockset – для моделирования электроэнергетических систем и устройств и т.д.

Понятно, что ни один пакет не может охватить все многообразие проблем и задач, поэтому необходимо владение базовыми программными средствами системы MATLAB как для решения конкретных задач, так и для понимания программ, входящих в ППП. Вместе с тем некоторые ППП оказались настолько интегрированными с системой MATLAB, что стали составной ее частью. Это относится к ППП Notebook (интеграция с текстовым процессором Word) и Simulink (моделирование динамических систем).

Важным достоинством системы MATLAB является ее открытость и расширяемость. Большинство команд и функций данной системы оформлены в виде текстовых файлов (М-файлов) и файлов на языке С (С++). Пользователь может их модифицировать и создавать новые.

Имеется возможность объединения системы с Mathcad и пакетом символьной математики Maple.

Система MATLAB использует командный режим работы. Имеются возможности компилирования, проблемно-ориентированного и даже визуального программирования

В системе MATLAB имеется широкий спектр демонстрационных примеров, которые можно модифицировать и использовать в своих целях. Приводятся некоторые из них.

Итак, MATLAB - универсальная интегрированная система, предлагаемая ее разработчиками как язык программирования высокого уровня для технических вычислений. Язык программирования MATLAB является интерпретатором. Этап компиляции полной программы отсутствует. Для выполнения программ необходимо находиться в среде MATLAB. Однако для программ на языке MATLAB созданы компиляторы, транслирующие программы на языке MATLAB в коды языков программирования С и С++. Это решает задачу создания исполняемых программ, изначально создаваемых в среде MATLAB.

Моделирование процесса теплообмена системы «животное - комбинированный электрообогреватель»

Прищепов М. А., канд. техн. наук, доцент, Винничек В.С., БГАТУ, г. Минск.

В целом система «электронагревательная установка — биологический объект» может быть представлена как взаимосвязанная теплоэнергетическая система, состоящая из отдельных структурных элементов, соединённых между собой и окружающей средой энергетическими потоками как связями.

При различных условиях окружающей среды животные сохраняют постоянную внутреннюю температуру тела $T_{\rm ж}$, соответствующую уровню оптимальной биологической активности. Необходимым условием поддержания стационарного теплового состояния организма является непрерывное удаление образующейся в нём теплоты. Чтобы теплота, выработанная организмом, могла быть отдана внешней среде, она должна быть сначала перенесена к поверхности тела. Для обеспечения этого процесса темпера-